论文部分内容阅读
文本分类是信息检索领域的重要应用之一,由于采用统一特征向量形式表示所有文档,导致针对每个文档的特征向量具有高维性和稀疏性,从而影响文档分类的性能和精度。为有效提升文本特征选择的准确度,本文首先提出基于信息增益的特征选择函数改进方法,提高特征选择的精度。KNN(K—NearestNeighbor)算法是文本分类中广泛应用的算法,本文针对经典KNN计算量大、类别标定函数精度不高的问题.提出基于训练集裁剪的加权KNN算法。该算法通过对训练集进行裁剪提升了分类算法的计算效率,通过模糊集的隶属度函数提升分类算法的准