论文部分内容阅读
本文所提算法是一种卷积神经网络与时空上下文结合的目标跟踪算法。将卷积神经网络算法融入时空上下文算法框架下,使得跟踪系统整体的鲁棒性有显著提高。引入Kalman滤波来处理目标被严重遮挡时,跟踪框容易漂移的问题。此外,整个跟踪系统采取由粗到精的双重目标位置定位方式,由时空上下文算法实现目标初定位,由卷积神经网络进行目标位置的精确定位。经实验验证,算法不仅稳定性和鲁棒性较好,而且实时性的条件也基本满足。