论文部分内容阅读
The fixed level and dynamic denoising method was studied based on indoor-to-outdoor measured channel impulse responses(IRs) at 5.25 GHz with radio frequency(RF) 100 MHz bandwidth. It is found that the dynamic ranges, peak powers and noise floors of the IRs are with close correlations. The comparisons with different denoising methods are given by deriving the power delay profiles(PDPs), root mean square(RMS) delay spread(RMS DS), number of paths(NOPs) and Ricean K-factors. It is concluded that the traditional fixed level noise cut is under estimate of DS and NOPs. The Ricean K-factors are of little sensitive to noise cut irrespective of what kind of methods applied. The PDPs are not very sensitive to the fixed level noise cut, however, obvious changes can be found by dynamic noise cut. The dynamic noise cut is preferred when clear noise floors is observed and decided from the measured IRs, it’s of importance in data post processing for wideband radio channel measurements as well as the relevant modeling work.
The fixed level and dynamic denoising method was studied based on indoor-to-outdoor measured channel impulse responses (IRs) at 5.25 GHz with radio frequency (RF) 100 MHz bandwidth. It is found that the dynamic ranges, peak powers and noise floors of the IRs are with close correlations. The comparisons with different denoising methods are given by deriving the power delay profiles (PDPs), root mean square (RMS) delay spread (RMS DS), number of paths (NOPs) and Ricean K-factors. The is is that that the traditional fixed level noise cut is under estimate of DS and NOPs. The Ricean K-factors are of little sensitive to noise cut irrespective of what kind of methods applied. The PDPs are not very sensitive to the fixed level noise cut , however, obvious changes can be found by dynamic noise cut. The dynamic noise cut is preferred when clear noise floors is observed and decided from the measured IRs, it’s of importance in data post processing for wideband radio channel measurements as well as the relevant modeling work.