论文部分内容阅读
An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes, and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average(ULWA)operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given, and the results demonstrate that it is much easier and faster for the ranking method based on expectation-variance when compared to the existing methods.
An approach is presented to deal with a multi-attribute decision-making problem in which the attribute weights are unknown and the attribute values take the form of uncertain linguistic variables. First, a linguistic assessment standard is set up to deal with the uncertain linguistic attributes , and the operation laws of uncertain linguistic variables and the uncertain linguistic weighting average (ULWA) operator are introduced. Then a ranking formula of uncertain linguistic variables based on expectation-variance is proposed. As for the case without weight information, a goal program based on a warp function is constructed to determine the attribute weights, and the ULWA operator is utilized to aggregate the assessment information of uncertain linguistic variables, and the corresponding alternatives are ranked by a formula based on expectation-variance. Finally, a numerical example is given , and the results demonstrate that it is much easier and faster for the ranking method based on ex pectation-variance when compared to the existing methods.