论文部分内容阅读
对拓扑电荷指数进行了扩展,得到了含电负性的手性拓扑电荷指数。将其与Julián-Qrtiz 等人对该指数的扩展结果相比较,结果表明,新的拓扑指数能够得到更好的QSAR 模型。进一步运用人工神经网络法构造了数学模型,该模型能够更好地预测手性化合物的活性。
The topological charge index is extended to obtain the chiral topological charge index with electronegativity. Comparing it with Julián-Qrtiz et al’s extended result of this index, the result shows that the new topological index can get a better QSAR model. Further use of artificial neural network method to construct a mathematical model, the model can better predict the activity of chiral compounds.