论文部分内容阅读
控制图是在线质量控制的重要工具,而利用控制图进行异常过程模式识别却是个困难问题。该文在分析现有控制图识别技术在实际应用中存在缺陷的基础上,提出了一种基于主元分析(PCA)和支持向量机(SVM)的控制图失拉模式识别方法。首先,将控制图作为信息图用于趋势模式数据集提取;然后,通过对数据集的高维特征进行线性组合并向低维空问投影的方法,降低了分类器的输入维数,提高了各维特征的敏感性;最后,为了克服神经网络方法速度慢和泛化能力弱的缺陷,利用SVM小样本学习能力,有针对性地设计SVM多分类嚣进行模式识别。用一个含有6