论文部分内容阅读
针对水处理过程非线性、时变和大滞后的特点,本文采用RBF和BP神经网络分别建立了水处理过程模型,利用水厂实际运行数据对两个模型分别进行了训练和检验。与BP神经网络模型相比,RBF神经网络模型具有逼近能力强、收敛速度快等优点。该模型可以实现对水处理过程的在线辨识,并可进一步用于该过程的神经网络预测控制。