Selectivity of Parvalbumin B Protein Binding to Ca2+ and Mg2+ at an Ab Initio QM/MM Level Using the

来源 :化学物理学报(英文版) | 被引量 : 0次 | 上传用户:szjisu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Ion selectivity in protein binding sites is of great significance to bi-ological functions.Although additive force fields have been successfully applied to various protein-related studies,it is diffi-cult to well capture the subtle metal-protein interaction for the prediction of ion selectivity,due to the remarkable polarization and charge transfer effect between the metals and the surrounding residues.Quantum mechanics-based methods are well-suited for dealing with these systems,but they are too costly to apply in a direct manner.In this work,the reference-potential method (RPM) was used to measure the selectivity for calcium and magnesium cations in the binding pocket of parvalbumin B protein by calculating the free energy change associated with this substitution reaction at an ab initio quantum mechan-ics/molecular mechanics (QM/MM) level.The alchemical transformations were performed at the molecular mechanics level,and the relative binding free energy was then corrected to the QM/MM level via thermodynamic perturbation.In this way,the free energy change at the QM/MM level for the substitution reaction was obtained without running the QM/MM simulations,thus remarkably enhancing the efficiency.In the reweighting process,we found that the selection of the QM region greatly affects the accuracy of the QM/MM method.In particular,the charge transfer effect on the free energy change of a reaction cannot be neglected.
其他文献
建立基于QuEChERS净化提取的液相色谱–串联质谱法测定鸡蛋中氟苯尼考、金刚烷胺和金刚乙胺的检测方法.样品经含1%甲酸的乙腈–水(体积比为80:20)溶液提取,用QuEChERS净化管净化,采用Agilent EC–C18(100 mm×3.0 mm,2.7μm)色谱柱分离,以0.2%甲酸水溶液和甲醇作为流动相,梯度洗脱,正负离子切换模式下检测,金刚烷胺与金刚乙胺用同位素内标法定量,氟苯尼考用外标法定量.氟苯尼考的色谱峰面积与质量浓度在0.5~20 ng/mL范围内呈现良好的线性关系,相关系数为0.99
建立同时测定灰渣和污泥中11种双酚类及烷基酚类化合物(双酚F、双酚A、4-叔丁基苯酚、4-丁基苯酚、4-戊基苯酚、4-己基苯酚、4-叔辛基苯酚、4-庚基苯酚、壬基酚、4-辛基苯酚和4-壬基苯酚)的超声辅助提取–固相萃取净化–高效液相色谱法.以二氯甲烷–丙酮(体积比为1:1)为提取溶剂,提取时间为20 min,提取温度为30℃,提取液经C18固相萃取柱净化后采用高效液相色谱紫外检测器进行定量分析,检测波长为225 nm.11种双酚类及烷基酚类化合物的质量浓度在0.1~2.0 mg/L范围内与色谱峰面积具有良
建立电感耦合等离子体原子发射光谱法测定含镓抗菌不锈钢中镓含量的方法.样品用盐酸和硝酸溶解,在优化的仪器条件下,选择417.206 nm作为分析谱线.采用基体匹配法绘制工作曲线,用以消除基体铁的基体效应;采用铁基体为校准空白,用以消除铁基体的光谱干扰.标准工作溶液中镓光谱强度与基体空白溶液中镓光谱强度之差与镓的质量分数在0.10%~5.00%范围内具有良好的线性关系,相关系数为0.9999,检出限为0.0012%.样品加标平均回收率为97.9%~103.6%,测定结果的相对标准偏差为0.22%~0.40%(
This special issue is dedicated to Professor John Z.H.Zhang for celebrating his 60th birthday.We are delighted to honor him for his distinguished scientific achievements and academic career as a professor.
期刊
建立离子色谱法同时测定高纯试剂和有机溶剂中甲胺、二甲胺、三甲胺和6种阳离子的方法.对样品处理、色谱柱类型、淋洗液梯度等条件进行优化,实现了过氧化氢、乙醇、丙酮和异丙醇样品的直接进样分析.选用Metrosep C Supp 1阳离子交换柱进行梯度分离,采用微填充床阳离子抑制电导检测器检测.9种待测物质的质量浓度在5~200μg/L范围内与色谱峰面积具有良好的线性关系,相关系数均大于0.999,方法检出限为0.007~0.082μg/L.样品加标回收率为80.0%~110.5%,测定结果的相对标准偏差为0.5
We report full-dimensional and fully coupled quantum bound-state cal-culations of the J=1 intra-and intermolecular rovibrational states of two isotopologues of the hy-drogen chloride-water dimer,HCl-H2O (HH) and DCl-H2O (DH).The present study complements
建立微波消解–电感耦合等离子体发射光谱法测定PtRh–10合金中微量金和铁的方法.以王水为消解剂,用微波消解仪对样品进行快速消解,采用电感耦合等离子体发射光谱法进行测定,分析线为Au 267.594 nm、Fe 259.940 nm.金和铁元素的质量浓度在0~2.0μg/mL范围内与信号强度呈良好的线性关系,相关系数为0.9999,检出限分别为0.0002%和0.0001%.金、铁测定结果的相对标准偏差分别为2.74%和3.56%(n=6),样品加标回收率分别为109.8%~112.7%和99.7%~10
设计一种新型的膜渗透动态配气系统,将动态配气膜渗透技术、基体空气标准添加方法、大气采样技术相结合,研制环境空气监测气体分析仪在线校准装置.该装置实现了环境空气污染组分SO2、NO2、CO在线监测仪的连续、实时、基体添加校准,校准不确定度小于3%(k=2).设计的长寿命膜渗透动态配气系统制备的标准气体混合物,可以连续使用10年以上,满足了世界气象组织(WMO)对大气环境监测计量标准的长期稳定性要求.
In this study,we investigated the structural and dy-namical properties of liquid water by using ab initio molecular dynamics simulation under periodic bound-ary conditions based on the fragment-based quantum mechanical approach.This study was carried out
In this work,we employ electronic structure calculations and nonadia-batic dynamics simulations based on many-body Green function and Bethe-Salpeter equation (GW/BSE) meth-ods to study excited-state properties of a zinc phthalocyanine-fullerene (ZnPc-C60)