论文部分内容阅读
近年来,深度学习以其强大的非线性计算能力在目标检测和识别任务中取得了巨大的突破。现有的深度学习网络几乎都是以数据的欧氏结构为前提,而在计算机视觉中许多数据都具有严格的流形结构,如图像集可表示为Grassmann流形。基于数据的流形几何结构来设计深度学习网络,将微分几何理论与深度学习理论相结合,提出一种基于Grassmann流形的深度图像集识别网络。同时在模型训练过程中,使用基于矩阵链式法则的反向传播算法来更新模型,并将权值的优化过程转换为Grassmann流形上的黎曼优化问题。实验结果表明:该方法不