论文部分内容阅读
为解决传统的玉米病害识别方法中特征提取主观性强及误识率高的问题,提出利用卷积神经网络对玉米病害进行识别。以玉米病害图像和健康图像共5种类别的玉米图像为研究对象,并采用LeNet模型进行试验。首先,按照8∶2的比例为每种玉米病害图像选择训练集和测试集。然后,通过试验组合和对比分析的方法比较不同卷积神经网络结构设置对准确率的影响,选出最佳参数。另外,选用Adam算法代替SGD算法来优化模型,通过指数衰减法调整学习率,将L2正则项添加到交叉熵函数中,并选择Dropout策略和ReLU激励函数。最后,确定了