论文部分内容阅读
传统反向传播(BP,Back-Propagation)算法虽然解决了多层感知器的收敛问题,但是训练时间长、收敛速度慢。本文针对训练样本分布状态未知的问题,提出了一种有效的加速收敛方法,即对不同的训练样本选择不同的学习率。将这种改进的BP算法应用到履带车与轮式车的声学分类中,明显提高了算法的收敛速度、泛化能力及稳定性,并可根据需要调整两种车辆的识别率。