论文部分内容阅读
A comparison of the adsorption isotherms of caffeine, theophylline and theobromine and the competitive adsorption of the three compounds on a C 18 column were investigated. The experimental parameters of the equilibrium isotherms were estimated by linear and nonlinear regression analyses. The linear equation as a function of the adsorption concentration of the single compound in its solution and the competitive adsorption of a single compound in a mixed solution were then determined. The adsorption equilibrium data were then correlated to the linear, Langmuir, Freundlich, Langmuir-Freundlich and stoichiometric displacement theory for adsorption(SDT-A) isotherm models. The mixed compounds of the three compounds were competitively adsorbed on the C 18 particles. The expression of stoichiometric displacement theory for adsorption was found to be more suitable for adsorption of methylxanthines on a C 18 column.
A comparison of the adsorption isotherms of caffeine, theophylline and the obromine and the competitive adsorption of the three compounds on a C 18 column were investigated. The experimental parameters of the equilibrium isotherms were estimated by linear and nonlinear regression analyzes. The linear equation as a function of the adsorption concentration of the single compound in its solution and the competitive adsorption of a single compound in a mixed solution were then determined. The adsorption equilibrium data were then correlated to the linear, Langmuir, Freundlich, Langmuir-Freundlich and stoichiometric displacement theory for The mixed compounds of the three compounds were competitively adsorbed on the C 18 particles. The expression of stoichiometric displacement theory for adsorption was found to be more suitable for adsorption of methylxanthines on a C 18 column.