论文部分内容阅读
针对非线性、非高斯问题,建立了动态状态空间模型,详细分析了贝叶斯滤波的原理。对于满足线性和高斯的状态空间模型,卡尔曼滤波性能是最优的。但是,真实世界的非线性、非高斯问题存在,使得人们不得不寻找一种更好的滤波方法。解决非线性滤波问题最普遍的方法就是扩展卡尔曼滤波。但扩展卡尔曼滤波只适合弱非线性系统,对于强非线性系统,容易导致滤波发散。因而介绍了适用于强非线性、无高斯约束的基于序列蒙特卡罗算法的粒子滤波波器及其改进算法规则化粒子滤波器。最后对上述几种滤波器进行了性能仿真及分析。