论文部分内容阅读
模糊C均值算法由于具有良好的聚类性能而被广泛应用于图像分割领域,但聚类中心的初始化问题一直影响着该算法的运行效率。好的初始聚类中心,可以使算法很快收敛于最优解,而不合适的初始聚类中心,不仅需要更多的迭代次数,而且还可能使算法最终收敛于局部最优解。文章结合云模型和FCM(模糊c均值)聚类算法,提出了一种遥感图像分割的新方法。利用云变换解决模糊C均值聚类算法的初始化中心选择问题,可以根据样本特性自动确定聚类中心值及个数,并以较少的迭代次数收敛到全局最优解,提高了模糊C均值遥感图像分割方法的效率,具有较好的稳定