论文部分内容阅读
提出一种基于Elman动态回归神经网络模型的鲁棒型广义预测控制(GPC).该算法首先用Elman网络对非线性系统进行辨识,建立预测模型,然后在控制中将模型输出值与测量输出值进行综合,代替量测输出用于控制中,从而降低辨识器与控制器对未建模动态的敏感性,加强控制器的适应能力和鲁棒性.仿真结果证明:将本算法应用于非线性系统预测控制,对未建模动态具有很强的鲁棒性和很好的控制能力.