论文部分内容阅读
运用人工神经网络模型对松花江流域年径流量径流序列做出预报,表明了人工神经网络模型在水文预报中具有一定的优势。通过对基本BP网络算法和L—M算法的比较工作,得到了适合该神经网络模型的训练算法,既L—M算法,提高了预报的精度。以松花江流域哈尔滨站年径流量实测序列为研究对象,在数值试验的基础上找到了适合于松花江流域哈尔滨站年径流序列预报的人工神经网络预报模型结构,提高了该模型的预报准确性。