Prophet-LSTM组合模型的销售量预测研究

来源 :计算机科学 | 被引量 : 0次 | 上传用户:qiyanru
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
预测某种产品销售量的短期及长期变化趋势对企业制定营销战略和优化产业布局等具有重要的参考价值。在深入分析Prophet加法模型和长短时记忆神经网络的特性的基础上,依据某企业产品销量时间序列数据的趋势规律,构建了一种用于预测销售量的Prophet-LSTM神经网络组合模型,设计并实现了与组合前Prophet、LSTM单项模型及两种典型时间序列预测模型的对比实验。实验结果验证了Prophet-LSTM组合预测模型在销量时间序列分析中具有更强的适用性和更高的准确性,为该企业应对市场需求变化提供了重要的科学依据。
其他文献
通过多媒体的运用,给学生产生直观的教学效果,给学生创设良好的课堂气氛,为学生审美素质、思维能力、创新意识的提高提供了可靠的物质基础,才能让学生在耳濡目染中逐步增强创
针对基本ACS算法模型求解TSP问题的缺陷,对ACS算法添加2-opt邻域搜索策略,增强算法对TSP问题解的构造能力,提高算法对TSP问题的求解精度。同时,根据ACS算法易于并行化的特点,
车牌识别技术是智能交通管理系统的核心,对它的研究与开发具有重要的商业前景。传统的车牌字符识别方法存在特征提取复杂的问题,而卷积神经网络作为一种高效识别算法,对处理二维车牌图像具有独特的优越性。针对传统卷积神经网络LeNet-5识别车牌图像时,存在训练数据较少、全连接层参数冗余以及网络严重过拟合等一系列的问题,设计了一种全局中间值池化(GMP-LeNet)网络,其使用卷积层代替全连接层,利用Netw
文章首次基于调查统计数据构建了山西会展人才能力需求与院校会展人才培养的二元体系,运用统计比较法和截面数据分析法分析了该体系中人才需求与供给的偏差以及产生偏差的影