论文部分内容阅读
针对传统的辐射源信号调制识别方法需要大量特征提取的问题,提出一种基于深度学习的辐射源信号自动调制识别算法,该算法通过对辐射源信号进行幅-相域二维图像表征,基于卷积神经网络实现层次化地理解和识别电磁信号。仿真结果表明:相比基于时域的传统信号调制识别算法,所提算法在中、高信噪下识别率分别提升了2.5%和2.3%,单信号的识别时间不大于0.1 ms。