论文部分内容阅读
在高速铣削加工过程中,提高轴向切削深度和主轴转速可以获得较高的材料去除率,然而限制轴向切削深度提高的一个因素是加工颤振。高速铣削系统动态失稳可能导致加工零件的表面几何精度偏差。分析高速铣削的表面位置误差对表征切削过程、刀具寿命估算和加工优化都起着重要作用。因此,在不考虑再生颤振影响的前提下,提出了一种数值分析和加工实验相结合的方法来研究表面位置误差。首先,构建了高速铣削加工过程模型,然后建立了动态铣削力模型,并推导了表面位置误差的分析方法。通过数值分析和铣削实验相结合,得到了高速铣削加工的稳定性叶瓣图。接下来,研究了逆铣削加工过程的表面位置误差,并详细分析了主轴转速和轴向切削位置对表面位置误差的影响规律。最后,把稳定性叶瓣和表面位置误差数据组合在同一个图里得到了高速铣削加工的综合分析图。借助综合分析图,能预测表面位置误差和优化高速铣削的工艺条件。
Increasing axial depth of cut and spindle speed for higher material removal rates during high-speed milling, however, is one of the factors that limit the increase in axial depth of cut due to machining flutter. Dynamic instability in high-speed milling systems can lead to variations in the surface geometry of machined parts. Analyzing the surface position error in high speed milling plays an important role in characterizing the cutting process, estimating tool life and optimizing machining. Therefore, without consideration of the influence of regenerative chatter, a method combining numerical analysis and machining experiment is proposed to study the surface position error. First of all, a model of high speed milling process is constructed, and then a dynamic milling force model is established and the analysis method of surface position error is deduced. Through the combination of numerical analysis and milling experiment, the stable lobe map of high speed milling is obtained. Next, the surface position error of the reverse milling process is studied, and the effect of the spindle speed and axial cutting position on the surface position error is analyzed in detail. Finally, the stability of the leaf and the surface position error data combined in the same figure got a comprehensive analysis of high-speed milling. With a comprehensive analysis of the map, it can predict the surface position error and optimize the process conditions for high-speed milling.