论文部分内容阅读
针对现有去噪算法可能造成超声图像细节模糊甚至丢失的问题,本文提出基于多尺度非线性扩散(multiscale nonlinear diffusion,MSND)的超声图像去噪模型。该模型结合冗余拉普拉斯塔形数据分解和非线性扩散的优点,利用冗余拉普拉斯塔形数据分解将图像分解为等大小的空间-频率子带,综合各子带的特征得到图像边缘和细节的精细表示,然后根据所得的综合特征指导各子带图像的非线性扩散。实验结果表明本文算法在去除噪声的同时能有效地保留和增强边界与细节。