论文部分内容阅读
1、面向全体,因材施教,重视数学意识的培养。素质教育的要义即面向全体,全面发展,主动发展。面向全体,“为一切人的数学”已成为国际数学教育改革的主流。数学要面向全体,就是要对每一位学生负责,在对大多数学生进行教学的同时,兼顾学习有困难和学有余力的学生,“使所有学生都达到基本要求”并且尽可能的提高。而现代教学要求以人为本,对“教师主导”和“学生主体”进行有机结合,立足学生主体,实施因材施教(即教师根据学生在知识、技能、能力、志趣、特长等方面的个性差异,从学生实际情况出发,有区别、有针对性地进行教学),让不同程度的学生都能有所得,都能尽最大努力,既能“吃得了”,又能“吃得饱”,让每个学生数学素质都能得到全面和谐的发展,最终实现“差生”转化、中等生优化、优生深化发展的目标,这是素质教育的出发点和归宿。教师应及时利用课堂这一主阵地不断地调动学生学习的主动性,树立学生学习的自信心,向学生传授数学知识、数学思想方法,使他们形成科学的数学观。只有这样,才能使所有学生喜欢数学,酷爱数学,变被动学习为主动学习,自觉地做学习的主人翁。久而久之,学生的数学意识增强了,他们会自觉地运用数学思想方法来处理各种现实问题,也会把日常生活中一些看上去似乎与数学无关的问题转化为数学问题。一旦学生达到这一层次,我们就可以欣慰地说:“我们培养的目标达到了。”我们通常所讲的“要给学生授之以‘渔’而不是只授之以‘鱼’”就是这个道理。比如学习函数时与商品销售相联系,培养学生用函数的思想观点来分析和解决实际问题的能力。
2、加强逻辑思维能力的培养,形成良好的思维品质。当今世界数学教育的改革热点是讨论“如何在增长知识的同时,不断提高思维能力和解决实际问题的能力”。数学教育不仅要注意具体的解题技能方法,更应注意数学知识发生过程中的思想方法,培养学生的数学能力和优良数学品质。数学中的逻辑思维能力是根据正确的思维规律和形式对数学对象的属性进行综合分析、抽象概括、推理论证的能力。它是基本数学能力之一,也是数学素质的核心。教学中应重视知识的形成、发现过程。数学本身是一门演绎性很强的学科,然而根据学生年龄特征和本着学生可接受的原则,教材的编排不可能十分系统完整,在教材中许多概念的形成,公式、定理等的发现过程往往没有详细完整给出,只是完美的结论,这就要求教师在课前深研教材、精心设计、重新组织教学内容。教学中应改变驾轻就熟的“题型+方法”的教学方式,让启发式教学进入数学教学活动,克服学生思维的被动性,选择自觉渗透数学思想方法;展示知识的发生过程,暴露知识的背景,为学生创设问题情境,教给学生发现、创造的方法,启发引导他们去思考、创造,让他们在创造中学习,在发现中获取,在成功中升华。具体地说,可利用概念、公式、定理的教学,培养学生思维的概括性和创造性;利用知识应用的教学,培养学生思维的连续性和广阔性;利用典型例题、练习题的多解和延伸变化,培养思维的敏捷性和深刻性;利用学习中经验的积累和存在问题的矫正过程,培养学生思维的方向性和批判性。
3、加强思想方法的教学,教会学生猜想,培养创新能力。数学思想方法是数学的灵魂与精髓,是核心,它是学生获取知识的手段,是联系各项知识的纽带,是知识转化为能力的桥梁。它比知识更具有普通适用性和抽象概括性。学生掌握了数学思想方法就能更快捷地获取知识,更透彻地理解知识,并能终身受益。中学数学涉及到的思想方法大致可分为三种类型:技巧型(如特殊、一般、消元、换元、降次、配方、待定系数法等)、逻辑型(如类比、归纳、分析、综合、演绎、反证法等)、宏观型(如函数与方程、分类讨论、数形结合、归纳猜想、整体化归、数学模型等)。
现代教育科研理论指出:教育要把实践中的经验上升到理论高度,进一步指导实践,使学生有意识地、主动地运用思想方法解决数学问题。高考改革内容也强调:更加注重能力的考查,在此基础上考察与高中水平相适应的创新能力和实践能力。教师要充分挖掘教材中蕴含的数学思想方法,突出数学思想方法教学,进行学生创新能力的培养。如猜想是一种非常重要的数学思想方法,科学上突破、技术上创新等发明创造往往是从猜想开始的。牛顿早就说过:“没有大胆的猜想就做不出伟大的发现。”著名的数学教育学家波利亚早在1953年就大声疾呼:“让我们教猜测吧!”“先猜后证——这是大多数的发现之道”。可我们在日常教学中,往往过分强调数学知识的严谨性和科学性,忽视实验猜想等合情推理能力的培养,让学生觉得数学枯燥、乏趣、难学。教师要教会学生通过观察、实验,进行猜想;通过分析特例,归纳出一般(共性)的规律,作出猜想;通过比较、概括,得到猜想;通过从宏观作出估算,先有猜想,再有严密数学证明。这样“既教猜想,又教证明”,激励学生猜想的欲望,让学生体会到数学也是生动活泼、充满激情,并富有哲理的一门学科。
总之,在实际教学中应该介绍一些科学家的著名猜想、科学发现的重大作用,如介绍德国数学家哥德巴赫猜想、我国数学家陈景润等人的杰出贡献,形成良好氛围。只有敢于猜想、大胆假设,才能促进学生从多层次、多角度地去思考问题,促使思维打破常规,产生新的思想、新的观念、新的理论,对培养学生的创新能力具有深远意义。近几年开放探索性问题教学、数学应用建模教学如春风般吹进中学数学课堂,对于以培养学生实践能力、创新意识为核心的素质教育的深入开展无疑具有巨大的推进作用。
2、加强逻辑思维能力的培养,形成良好的思维品质。当今世界数学教育的改革热点是讨论“如何在增长知识的同时,不断提高思维能力和解决实际问题的能力”。数学教育不仅要注意具体的解题技能方法,更应注意数学知识发生过程中的思想方法,培养学生的数学能力和优良数学品质。数学中的逻辑思维能力是根据正确的思维规律和形式对数学对象的属性进行综合分析、抽象概括、推理论证的能力。它是基本数学能力之一,也是数学素质的核心。教学中应重视知识的形成、发现过程。数学本身是一门演绎性很强的学科,然而根据学生年龄特征和本着学生可接受的原则,教材的编排不可能十分系统完整,在教材中许多概念的形成,公式、定理等的发现过程往往没有详细完整给出,只是完美的结论,这就要求教师在课前深研教材、精心设计、重新组织教学内容。教学中应改变驾轻就熟的“题型+方法”的教学方式,让启发式教学进入数学教学活动,克服学生思维的被动性,选择自觉渗透数学思想方法;展示知识的发生过程,暴露知识的背景,为学生创设问题情境,教给学生发现、创造的方法,启发引导他们去思考、创造,让他们在创造中学习,在发现中获取,在成功中升华。具体地说,可利用概念、公式、定理的教学,培养学生思维的概括性和创造性;利用知识应用的教学,培养学生思维的连续性和广阔性;利用典型例题、练习题的多解和延伸变化,培养思维的敏捷性和深刻性;利用学习中经验的积累和存在问题的矫正过程,培养学生思维的方向性和批判性。
3、加强思想方法的教学,教会学生猜想,培养创新能力。数学思想方法是数学的灵魂与精髓,是核心,它是学生获取知识的手段,是联系各项知识的纽带,是知识转化为能力的桥梁。它比知识更具有普通适用性和抽象概括性。学生掌握了数学思想方法就能更快捷地获取知识,更透彻地理解知识,并能终身受益。中学数学涉及到的思想方法大致可分为三种类型:技巧型(如特殊、一般、消元、换元、降次、配方、待定系数法等)、逻辑型(如类比、归纳、分析、综合、演绎、反证法等)、宏观型(如函数与方程、分类讨论、数形结合、归纳猜想、整体化归、数学模型等)。
现代教育科研理论指出:教育要把实践中的经验上升到理论高度,进一步指导实践,使学生有意识地、主动地运用思想方法解决数学问题。高考改革内容也强调:更加注重能力的考查,在此基础上考察与高中水平相适应的创新能力和实践能力。教师要充分挖掘教材中蕴含的数学思想方法,突出数学思想方法教学,进行学生创新能力的培养。如猜想是一种非常重要的数学思想方法,科学上突破、技术上创新等发明创造往往是从猜想开始的。牛顿早就说过:“没有大胆的猜想就做不出伟大的发现。”著名的数学教育学家波利亚早在1953年就大声疾呼:“让我们教猜测吧!”“先猜后证——这是大多数的发现之道”。可我们在日常教学中,往往过分强调数学知识的严谨性和科学性,忽视实验猜想等合情推理能力的培养,让学生觉得数学枯燥、乏趣、难学。教师要教会学生通过观察、实验,进行猜想;通过分析特例,归纳出一般(共性)的规律,作出猜想;通过比较、概括,得到猜想;通过从宏观作出估算,先有猜想,再有严密数学证明。这样“既教猜想,又教证明”,激励学生猜想的欲望,让学生体会到数学也是生动活泼、充满激情,并富有哲理的一门学科。
总之,在实际教学中应该介绍一些科学家的著名猜想、科学发现的重大作用,如介绍德国数学家哥德巴赫猜想、我国数学家陈景润等人的杰出贡献,形成良好氛围。只有敢于猜想、大胆假设,才能促进学生从多层次、多角度地去思考问题,促使思维打破常规,产生新的思想、新的观念、新的理论,对培养学生的创新能力具有深远意义。近几年开放探索性问题教学、数学应用建模教学如春风般吹进中学数学课堂,对于以培养学生实践能力、创新意识为核心的素质教育的深入开展无疑具有巨大的推进作用。