论文部分内容阅读
自从上海开始推行垃圾分类之后,被逼疯的上海人已经成为广大网友的快乐喷泉,贡献了不少段子和表情包。据说有人开车前往杭州和苏州倒垃圾,还有很多实在搞不懂分类的外地“学渣”扛不住压力直接回老家了……
上海人民为之头疼的时候,前一秒还觉得与己无关、忙着 “哈哈哈”的网友很快就被现实五雷轰顶了:即便不在上海,可能在很快也要实施垃圾分类的45个城市里。总之,谁都别想乱扔垃圾!
现在都在说人工智能(AI)。垃圾分类这么困难的事儿,AI能不能代劳?
垃圾分类实在是一个不怎么美妙的话题。严苛的日本垃圾政策就有34种分类,每天扔哪种垃圾都有明确的规定,错过时间就要遗留在家里。
而且垃圾处理的产业链条很长,后续还有收运、流通、处置。总之,任何一个环节出了问题,都会直接影响垃圾分类的最终效果。
幸好,AI技术的興起,已经能够为这项全球工程贡献一份力量了。
目前来看,AI可以在产业链全程提供助力:
1.前端(居民端)智能检测
“逼疯”广大市民的垃圾分类难点,主要就在于识别不同的材料特征并予以归类,其中涉及比较高的技术门槛。
比如,智能回收垃圾站就对扔垃圾的人十分友好,你只需要在垃圾桶前扫描一下,它就会自动识别居民投递物的类型,并提示具体的分类。如果是能卖钱的可回收垃圾,投递到相应的垃圾桶后还会自动将兑换的现金打到居民的手机账户里,可以说是很适合懒人了。
如果你的小区没有此类智能垃圾桶,你也可以使用带有AI识别功能的手机APP,比如支付宝最近推出的“垃圾分类助手”,就成了帮助上海人民的神器。
2.终端(回收者)自动化
上海不愧是大都市的典范,广大群众吐槽归吐槽,但也都是尽可能地配合垃圾分类政策,努力程度堪比高考。不过,在家分得再好,如果垃圾车将其混为一体,或者不考虑小区的实际量级,那也会带来不少的麻烦,让大家做无用功的同时,也影响政策的公信力。
因此,提高回收环节的清理效率和分拣水平,就变得至关重要了,而这正是AI所擅长的。
举个遥远的例子,在硅谷,创业公司Compology就给小区的垃圾箱配备了智能传感器。这些传感器每天会多次拍摄垃圾桶内部的高分辨率照片,并发送图像到云端。这样,垃圾清理公司就能够及时监控信息,优化卡车清运垃圾的路线或时间表,快捷高效地收取垃圾,从而保证不同规模小区的清理效率。
除此之外,在运载过程中,垃圾分类后也导致清运车增加。从2月20日起,上海全市就配置及涂装湿垃圾车982辆、干垃圾车3135辆、有害垃圾车49辆以及可回收物回收车32辆。显然,分类的细化也会导致司机人手不足,而自动驾驶则有望解决这一问题。
今年5月,沃尔沃公司宣布与瑞典Renova公司联手,开始测试自动驾驶垃圾车。除了和普通无人车一样配置激光定位器、雷达、摄像头、红外摄像头等传感系统之外,这种卡车还能够按照设置好的路线,沿途收集垃圾。所以,驾驶员只需要走两步,专心收集垃圾,不需要每次都返回驾驶室,开着车再前往下一个垃圾桶,大大减少了停车次数。
同时,垃圾回收汽车还能够起到终端网络的监测作用。
我们以上海的垃圾收运为例,每辆垃圾清运车行走到了哪里,在哪个小区运了哪些类型的生活垃圾,装进了哪个集装箱,运到哪里处置,这些实时数据都会上传到“城市的垃圾大脑”,然后城市环卫系统和再生资源系统会根据前端的数据进行分析,从而对垃圾清运、设施布局等城市行为作出更好的规划。
3.后端(处理厂)智能化
经过人和机器的努力,垃圾终于来到了处理厂,可以进行改造了。
这里的问题也是最多的。
首先,再严丝合缝的前中端过程中,总会有漏网之鱼,比如将有害垃圾丢进了干垃圾里,这时候就需要识别出是哪个小区出了问题需要强化分类教育,同时,处理厂还要进行二次分拣。
但是,回收垃圾带给人类员工的伤害也是巨大的。以美国为例,传统垃圾分拣的工作是由人类来完成的,肮脏、枯燥而且危险。他们常常会接触到有害物品,比如针管、碎玻璃等,被称为美国最危险的职业之一。
而处理工厂的智能自动化一旦能够普及应用,就可以让这些分拣工人离开危险的岗位了。
前不久,北美纸箱包装委员会就与阿尔卑斯废物循环利用公司以及AMP机器人公司合作,在工厂中安装了AMP公司的Cortex分类机器人。这种机器人配备了像蜘蛛一样的机械臂,利用摄像机向云端大脑传递影像信息,从而识别出传送带上的废物,机械臂就会对其进行分拣。
目前,机器人能够达到98%的分类准确度,每天工作大约16小时,每分钟可以做出60次分拣动作,远高于人类每分钟40次的平均值。
同样这么做的还有芬兰的ZenRobotics机器人公司。美国Recon废物服务公司便安装了由这家机器人公司提供的人工智能回收系统Heavy Picker,不仅能够整理建筑垃圾,还能对其进行分类——金属、木头、石头等,然后投入循环利用。目前,苏州绿和公司也引入了该技术。
AI在垃圾领域的应用可谓是十分广阔。人工智能依靠成熟的感知技术,比如传感器、计算机视觉等,让每个环节流通的垃圾和行为都能被数据化。不过要让识别的准确率更高,则需要进行一定的数据积累与训练。换句话说,AI系统的引入宜早不宜迟。
与此同时,人工智能还具有“云+端+边”算力的保障优势。垃圾分类所涉及的环节对实时动态数据的监测和处理要求非常高,无论是在垃圾倾倒时的实时甄别,还是车辆行进路线的合理控制,这些过程都需要基础算力的支持,因此,边缘算力、终端芯片、云端处理的综合联动才能成就这项庞大的城市工程。未来随着5G网络的普及,即时的数据观察会让AI的效能变得更强。
听起来很美。那么,AI的落地有没有什么限制条件呢?答案几乎是肯定的!
最为直接的影响是,随着智能机器人的引入和垃圾处理场的自动化改造,会有很多从事驾驶和分类工作的工人失业。
的确,他们的工作条件称不上好,但也是一份能够养家糊口的谋生之道。让他们转型去做那些AI提供的新工作岗位,比如数据分析师、操控高科技卡车和设备的机械师,这可能吗?
未来垃圾清理产业的人员素质必然会大幅提升,但机会未必真的会属于那些被机器淘汰的一线工人。届时大量的底层劳动人口去往何处,恐怕是一个棘手的问题。因此,垃圾产业智能化的步子应该不会迈得太快。至少,在一段时间内,还是会由人类大爷、大妈来为你答疑解惑,而不是AI。
除此以外,部署成本也会成为垃圾分类人工智能化的阻碍。
目前智慧城市、车路协同等综合方案都还在封闭道路上测试,或是刚刚开始终端改造。而垃圾分类的收集终端密集,数据维度多样,有着较大的自由度和模糊地带,层出不穷的新型垃圾也在挑战着传统的分类体系,这就导致现阶段想要依靠AI实现精准判断和运维决策,几乎是一件不可能的事。而在一个400万人口的中等城市,建设智能收集终端+智慧平台+智能检测线的一次性投资,初步估算约为15亿元左右。这些都是要城市财政来买单的,恐怕只有少数超级城市能够逐步启动。
AI垃圾分类的未来依然是值得期待的。每个人都必须与时代共同成长。让我们和AI一起,给岁月以文明,而不是给文明以岁月。
(编辑 宦菁 [email protected])