【摘 要】
:
人脸妆容迁移是指将参考妆容迁移到素颜人脸上,在保持面部特征不变的同时尽可能展现参考妆容的风格的一种任务。为了进一步实现人脸妆容自动迁移技术,避免现有妆容迁移方法没有充分考虑人与人之间的五官差异而导致提取的人脸信息不足等问题,提出了一种基于深度卷积神经网络的人脸妆容迁移算法。该算法首先自动定位素颜人脸和参考妆容的五官,提取重要部位的特征信息。然后通过妆容传递网络和损失函数,经过深度卷积神经网络自主训
【基金项目】
:
国家自然科学基金青年基金资助项目(11705103),山东省重点研发计划资助项目(2019GGX105013),山东省高等学校公共安全管理技术重点实验室(山东管理学院)资助项目,山东管理学院科研启航计划资助项目(QH2020Z08)。
论文部分内容阅读
人脸妆容迁移是指将参考妆容迁移到素颜人脸上,在保持面部特征不变的同时尽可能展现参考妆容的风格的一种任务。为了进一步实现人脸妆容自动迁移技术,避免现有妆容迁移方法没有充分考虑人与人之间的五官差异而导致提取的人脸信息不足等问题,提出了一种基于深度卷积神经网络的人脸妆容迁移算法。该算法首先自动定位素颜人脸和参考妆容的五官,提取重要部位的特征信息。然后通过妆容传递网络和损失函数,经过深度卷积神经网络自主训练,最终实现了参考妆容向素颜人脸的自动迁移。仿真实验结果表明,与目前的主流算法进行对比,该算法耗时更短、
其他文献
针对现有基于K-means的半监督聚类算法存在的共同问题,即对离群点敏感、在非凸数据集与不平衡数据集上表现差,提出了一种基于层次策略的散布种子半监督中心聚类算法。首先通过基于影响空间的样本边缘因子将数据集分为核心层与边缘层,然后应用一种改进的K-medoids算法完成核心层聚类,最后采用一种递进半监督分配策略对边缘层进行分配得到最终聚类结果。算法通过层次策略解决了离群点干扰问题、半监督子簇聚类及合
车牌识别是构建智慧城市交通系统的重要技术,当前车牌识别系统对于单行车牌已经达到了较好的识别和应用效果,但无法满足对包含堆叠字符的车牌的识别需求。针对该问题,提出了一种基于深度学习且不依赖于字符分割的方法以识别含堆叠字符的车牌。首先对倾斜、扭曲的车牌进行投影矫正;然后使用MobileNetSSD算法检测定位车牌中的单排字符和堆叠字符;之后将堆叠字符送入基于CTC损失的堆叠字符识别网络,进行非字符分割
针对当前软件定义网络(SDN)在应对大量数据流时造成的流表利用率低、转发响应较慢以及当前网络调度算法容易造成网络局部拥塞和负载不均衡等问题,提出一种基于分段路由的多路径调度算法SRMF。首先,SDN控制器根据网络拓扑连接情况下发初始流表;综合考虑网络链路剩余带宽、丢包率和数据流估测带宽需求进行路径权重计算;最后,根据路径权重选择最优路径并构造分段流表下发到边缘交换机。实验结果表明分段路由转发技术在
目前,深度学习已广泛用于MR医学图像分析,然而获取大量的MR训练数据集是一项巨大的挑战。针对传统基于物理方法的数据集扩充方法(如旋转、缩放、仿射变换等)均存在较大的局限性,提出一种新的图像合成器。首先对MR图像数据集进行统一的尺寸处理,然后将每张图像分为大小相等的非重叠块,再利用自动编码器提取图像块的编码,并将图像块编码和随机噪声作为生成器的输入,最后将生成的图像块拼接成完整的MR图像。采用该方法
针对信道矩阵维度高以及接收信号复杂的情况,提出了一种适用于大规模MIMO系统上行链路信号检测的混合迭代算法,即结合自适应阻尼雅克比(damped Jacobi,DJ)算法和共轭梯度(conjugate gradient,CG)算法。首先利用CG算法为自适应阻尼雅克比迭代算法提供有效的搜索方向;随后提出切比雪夫方法消除松弛参数对信号检测的影响,在降低算法复杂度的同时加快收敛速度;最后,利用信道编译码
针对城市交通难以处理大量数据且实时性差等问题,提出了根据增量式城市交通流数据预测拥堵情况的一种基于国产处理器的L-BFGS(limited-memory BFGS)算法。该算法通过存储向量序列计算Hessian矩阵,改进Two-Loop算法求下降方向,在Spark集群中并行处理时收敛速度快,适用于实时性要求强的城市交通场景。实验结果证明,L-BFGS预测算法完全可以在国产平台上对大规模的实时交通数
SNN是更具生物可解释性的新型网络模型。针对传统SNN模型表征能力有限,难以应用于实际任务的问题,对SNN处理脑电识别任务进行了研究,提出具有长短期记忆结构的SNN模型。首先采用改进的BSA编码算法处理脑电信号;然后构建具有自适应阈值的脉冲神经元模型;在此基础上,基于Py Torch框架建立结合LSTM结构的SNN模型;最后使用替代梯度的方法克服了脉冲序列不可微分的问题,在保留神经元动态特性的同时
用于领域中业务关键型的自适应系统(self-adaptive system,SAS)需要遵从严格的质量要求,在多agent自适应系统运行过程中需要根据动态环境与需求实现自适应调整。针对上述问题,提出了一种基于马尔可夫的多agent自适应在线验证方法。首先将多agent系统中环境影响因素转换为概率形式,然后将系统形式化为马尔可夫模型,最后通过模型检查的方式进行在线验证,使系统通过验证结果对自身进行调
针对传统的K近邻算法在计算样本之间相似度时将每个属性视为同等重要的问题,提出了一种基于推土机距离的方法来计算每个条件属性的权重。首先根据近邻关系划分用于比较一致性的两个分布;之后根据推土机距离设计不一致性评价函数,用于衡量每个属性下各个样本的近邻样本集与这一集合由决策属性细化的等价划分之间的不一致性程度;最后将近邻的不一致性程度转换为相应属性的重要性,用于实现属性加权K近邻分类器。通过在多个数据集
针对现有蜂窝网络功率分配算法存在泛化能力弱、效率低等问题进行了研究,提出基于深度双Q网络(deep double Q network,DDQN)的功率分配算法。采用双神经网络结构,解决强化学习过程中易出现的维度灾难及值函数过估计问题;对状态信息进行设计并输入神经网络,输出智能体的动作行为,并设计奖赏函数反馈给神经网络,使智能体可以有效地自主学习,多次迭代得到最优的功率分配策略。仿真结果表明,所提的