论文部分内容阅读
提出一类新的用于非线性时间序列建模的混合自回归滑动平均模型(Mixture autoregressive moving average model简记MARMA).该模型条件分布富于变化的特点使得它能够描述非对称、多峰、以及条件异方差等非Gauss特征.研究得到了MARMA模型的平稳性条件和自相关函数.利用BIC(Bayes information criterion)准则来选择模型.运用EM(expectation maximization)算法估计模型的参数.将MARMA模型应用于一组金融数据,并和其它模型做比较.结果表明MARMA模型能够更准确地描述该数据的特征.