论文部分内容阅读
该文提出一种改进的随机游动模型,并在此模型的基础上,发展了一种数据聚类算法。在此算法中,数据集中的样本点根据改进的随机游动模型,生成有权无向图G(V,E,d),其中每个样本点对应图G的一个顶点,并且假设每个顶点为可以在空间中移动的Agent。随后计算每个顶点向其邻集中顶点转移的概率,在随机选定邻集中的一个顶点作为转移方向后,移动一个单位距离。在所有样本点不断随机游动的过程中,同类的样本点就会逐渐的聚集到一起,而不同类的样本点相互远离,最后使得聚类自动形成。实验结果表明,基于随机游动的聚类算法能使样本