论文部分内容阅读
目的激光雷达在自动驾驶中具有重要意义,但其价格昂贵,且产生的激光线束数量仍然较少,造成采集的点云密度较稀疏。为了更好地感知周围环境,本文提出一种激光雷达数据增强算法,由双目图像生成伪点云并对伪点云进行坐标修正,进而实现激光雷达点云的稠密化处理,提高3D目标检测精度。此算法不针对特定的3D目标检测网络结构,是一种通用的点云稠密化方法。方法首先利用双目RGB图像生成深度图像,根据先验的相机参数和深度信息计算出每个像素点在雷达坐标系下的粗略3维坐标,即伪点云。为了更好地分割地面,本文提出了循环RANSAC