论文部分内容阅读
把H?lder空间上的Privalov定理推广到LPS(D)空间上,证明当跳跃函数f( t)∈LPS ∩LP 时,分区解析函数F(z)=21πi∫D f(t)t -zdt ,zD的内部分支属于Besov空间,而F(z)在边界两边的正负边值F+(t)、F-(t)以及f(t)的奇异积分(SF)(t)均属于LPS(D)空间。