论文部分内容阅读
步态识别具有非接触性、非侵犯性、易感知等优势,然而,在跨视角的步态识别中,行人的轮廓会随人的视角的变化而不同,从而影响步态识别的性能。为此,提出了共享转换矩阵的胶囊网络及其改进的动态路由算法,从而减少了网络训练参数。在此基础上,通过融合视角特征,利用Triplet损失与Margin损失提出了融合视角特征的跨视角步态识别模型。在CASIA-B数据集上的实验结果表明,使用共享转换矩阵的胶囊网络提取步态特征是有效的,在正常行走、携带背包、穿戴外套条件下,所提融合视角特征的模型在识别准确率上比基于卷积神经网