基于线性调频机制的太赫兹无损检测成像技术

来源 :光学学报 | 被引量 : 0次 | 上传用户:jiangyingzhou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于全固态电子器件和零中频机制,设计了基于调频连续波的太赫兹无损检测成像系统.所提系统的有效频率范围为9.375~13.75 GHz,经24倍频后自由空间中的频率范围为0.225~0.330 THz.采用单个喇叭天线与定向耦合器结合,实现收发一体,并利用光学透镜组对太赫兹波束进行准直聚焦.对准光系统的波束质量进行了优化,提高了系统的信噪比,确保了在现有参数条件下的最佳空间分辨率.同时,采用相位聚焦的方法对系统进行了非线性矫正,使得深度分辨率接近理论分辨率.系统采用直线扫描和旋转扫描组合的方式,实现了柱坐标三维数据的获取.利用所提系统对高压绝缘端子进行了检测评估,并重构了全视角透视图像,实现了目标三维结构在实空间和像空间的孪生对应.此外,所提系统能够准确地显示绝缘端子内部的异常区域,有助于直观地评估被检测目标的内部状态,进而可以进一步满足工业领域无损检测的需求.
其他文献
固-液接触状态广泛存在于机床核心单元关键零部件的接触运动副中,精确获得固-液结合面法向接触刚度及阻尼参数是高档数控机床产品在研发阶段就存在的一个关键理论与技术问题,并且仍然尚未根本解决.固-液结合面在介观层面上表现为两个粗糙表面的接触,在微观层面上表现为微凸体之间的接触,并在中/重载荷作用下微凸体可能会发生弹性/弹塑性/塑性变形.为了揭示静动态外载荷对固-液结合面接触刚度及阻尼的影响,分别基于GW模型、KKE模型和AF模型对接触微凸体弹性/弹塑性/塑性变形展开研究,并结合流体动力润滑REYNOLDS方程,
为发展神经网络方法在求解薄板弯曲问题中的应用,基于Kirchhoff板理论,提出一种采用全连接层求解薄板弯曲四阶偏微分控制方程的神经网络方法.首先在求解域、边界中随机生成数据点作为神经网络输入层的参数,由前向传播系统求出预测解;其次计算预测解在域内及边界处的误差,利用反向传播系统优化神经网络系统的计算参数;最后,不断训练神经网络使误差收敛,从而得到薄板弯曲的挠度精确解.以不同边界、荷载条件的三角形、椭圆形、矩形薄板为例,利用所提方法求解其偏微分方程,与理论解或有限元解对比,讨论了影响神经网络方法收敛的因素
与经典体系相比,量子信息协议在大幅提高信息处理的安全性、保真度和容量方面具有巨大的优势.各种具有不同功能的量子信息协议已经被提出并实现.介绍了利用铷原子四波混频过程构建一套能兼容多种不同量子信息协议的多功能平台.基于这个平台可以实现并行9通道全光量子隐形传态,部分无实体量子态传输和最优N→M相干态量子克隆协议.更重要的是,部分无实体量子态传输协议可以同时连接全光量子隐形传态协议和最优1→M相干态量子克隆协议.这些量子信息协议在全光量子通信中具有潜在的应用.
针对相干光偏移正交调幅技术的多载波滤波器组传输(CO-FBMC/OQAM)系统,提出一种基于导频的时域相位噪声补偿算法.建立一个时域相位噪声补偿模型,即相位噪声用时域扩展的离散余弦变换(DCT)近似,相位噪声包括公共相位误差(CPE)和非CPE相位噪声,它们均可通过估计DCT系数来获得.为了计算这些DCT系数,先用基于导频的扩展卡尔曼滤波(EKF)估计CPE,然后将CPE补偿后一部分判决错误概率较高的数据舍弃,仅保留余下的CPE补偿后数据进行预判决用以预估发送端数据,最后在波特率为32 GBaud的背对背
经过近20年的发展,基于光频跃迁的光晶格原子钟展示了优异的频率稳定度和不确定度,是重定义时间单位“秒”的有力候选者之一.随着地面基准光晶格原子钟性能的提升,光晶格原子钟已经成功地走出了实验室,实现了可搬运晶格原子钟并正在研制可在太空中运行的空间光晶格原子钟.本文综述了影响光晶格原子钟稳定度和准确度的关键因素,以及抑制或者消除这些因素的主要技术;并结合国内外的研究成果,综述了地面基准光晶格原子钟、可搬运光晶格原子钟和空间光晶格原子钟的技术特点和研究进展.
根据洛伦兹互易定理,在通常的光学系统中,交换信号源和探测器的位置后接收到的光信号不变.这为光路设计和分析带来了方便.在全光通信和量子网络中,需要有效地控制光信号的定向传输以避免反射光对信号的干扰、分离相向传输的光信号等,因此需要只允许光单向传输的非互易器件.以磁光隔离器为背景切入,简单介绍磁光领域的研究现状.重点从有源和无源两个方面对无磁非互易领域的发展进行综述,以展现量子光学在无磁非互易领域的重要应用.
随着量子信息科学的迅速发展,以光子为物理载体的量子纠缠源已成为量子非定域性检验、量子通信、量子计算以及量子精密测量等领域必不可少的资源和重要技术手段.利用非线性介质中的自发参量下转换过程,从早期的β相偏硼酸钡晶体到后来的基于准相位匹配的周期性极化晶体等,双光子极化纠缠源凭借其在亮度和品质方面的优势得到了快速发展,这为基于卫星平台的广域量子通信和量子物理的基础检验提供了可能.从基本原理出发,系统介绍了近年来面向空间平台应用的量子纠缠源的发展和最新成果,特别是以“墨子号”量子科学实验卫星为代表的星载量子纠缠源
少模掺铒光纤放大器(FM-EDFA)是长距离模分复用(MDM)光纤通信系统中必不可少的中继器件,其模间增益差(DMG)直接影响系统的通信质量.为实现FM-EDFA中不同模式的增益均衡,在包层泵浦条件下,提出了一种支持4模式组的铒离子分层掺杂环芯光纤,且无需考虑泵浦模式.对环芯光纤进行了设计,通过控制纤芯中心凹陷和外部凹槽折射率引起的模式分布变化,结合合理设计的铒离子掺杂半径及浓度来减小DMG.结果 表明,当铒离子在环芯内分双层掺杂时,最大DMG从0.8 dB(单层均匀掺杂)降低至0.44 dB(环芯双层)
对1550 nm铒镱共掺光纤放大器不同温度下的输出功率以及经过高温老化后的输出功率和光谱进行了实验研究.通过对比高温和常温下铒镱共掺光纤放大器的输出功率随泵浦功率的变化曲线,得出铒镱共掺光纤放大器在高温环境工作可提高输出功率,且不同长度的增益光纤对温度的敏感性不同的结论.以Arrhenius模型为加速老化模型对增益光纤进行温度为85℃、时间为876 h的加速老化实验,结果表明在常温环境工作5y后铒镱共掺光纤放大器的输出功率将降低11.24%,放大的自发辐射噪声将增加4.1 dB,根据指数模型预测得到该放大
针对先进光刻调焦调平传感器系统的增益系数工艺相关性开展理论仿真与实验研究.建立了增益系数工艺相关性理论模型,仿真分析了调焦调平传感器增益系数与测量误差随不同光刻工艺材料膜层厚度的变化规律.在自研实验系统上对表面涂覆不同厚度SiO2薄膜的硅片样品进行了实验验证,发现实验与理论仿真得到的增益系数与测量误差随膜层厚度的变化规律一致.仿真与实验研究结果表明,调焦调平传感器的工艺相关性测量误差在SiO2膜层厚度为250 nm和690 nm附近时分别出现约55.9 nm和36.6 nm的误差峰值.采用表面覆盖特定膜层