论文部分内容阅读
自适应共振模型是为了能够分类任意次序模拟输入模式而设计的,它可以按任意精度对输入的模拟观察矢量进行分类,较好地解决了前稳定性和灵活性问题,同时能够避免对网络先前所学的学习模式修改。本文将ART2模型应用干信用风险评估,通过实证比较研究,结果显示应用自适应共振模型进行信用风险评估在精度和准确性上,都优于其他神经网络模型和统计方法。