论文部分内容阅读
为了提高PID控制器对系统的稳定性,并减少控制误差,提出一种自适应神经网络PID控制器。首先,在离散时间模型中开发PID控制器,以减少在连续时间中设计控制器所带来的问题。然后,定义一个自适应神经网络,调整控制增益,以实现导航任务过程中六旋翼无人机(UAV)的跟踪误差最小化。利用梯度下降方法对PID控制器的重要参数进行整定。此外,通过卡尔曼滤波对传感器测量值进行过滤,以提高在线自适应的性能。实验结果验证了所提控制器的优越性,绝对值误差积分(IAE)为2.576×10~3,时间绝对值误差积分(ITAE)