学贯中西:让机器学习华夏智慧

来源 :电子产品世界 | 被引量 : 0次 | 上传用户:kuakua01
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
0 前言rn机器学习(ML)除了能够学习大数据(big data)中的规律和法则之外,也能够学习人类的智慧.华夏文化渊源长久、博大精深,处处充满智慧.因此,我们可以让机器来学习华夏的文化底蕴和智能,还能更上层楼而学贯中西.
其他文献
常态化疫情防控形势下,公共场合佩戴口罩可以有效降低交叉感染风险,针对口罩佩戴检测中的小目标检测困难以及实时性较差的问题,提出了基于嵌入式平台Jetson nano的口罩佩戴检测系统,通过增加YOLOv3-tiny的主干网络层深度,引入注意力机制以及TensorRT模块,提升了嵌入式系统口罩佩戴检测任务的精度和实时性,改进后的YOLOv3-tiny算法mAP值达到了87.5%,FPS为20.4,相较
在复杂空间的自动化装配过程中,模块与模块安装位置的安装孔之间需要在孔位对准后用螺丝固定,针对这一问题,设计实现了一种精细对孔方法。该方法从安装孔视频流中定时读取一帧图像,在对图像进行滤波去噪、边缘检测等操作后,采用最小二乘法检测安装孔圆心坐标信息,根据安装孔之间的圆心距判断安装孔是否对准。实验在0.062 5 mm的标定精度下,Hough圆变换和最小二乘法的圆心距检测结果分别是0.125 mm和0
针对火灾检测算法检测多尺度火焰和烟雾精度低,且实时性差的问题,提出了一种基于Transformer改进YOLO v4的火灾检测方法。首先,结合MHSA(Multi-Head Self-Attention)改进了CSPDarknet53主干网络,建模全局依赖关系以充分利用上下文信息。此外,基于MHSA改进了PANet模块进行多尺度特征图融合,获取更多的细节特征。为验证改进方法的有效性,与YOLO v
九宫格输入法是手机端常用的中文输入法之一,可将26个英文字母按顺序布局在8个数字键上,每个键上有3~4个字母.然而顺序布局显然不是最优的.本文采用统计自然语言处理计算键盘布局的平均击键次数,并采用模拟退火算法优化,在搜寻键盘数据时,对其实行哈希计算,避免重复搜索,最终找到九宫格输入法的最优键盘布局方案.结果显示,本文的最优键盘布局方案比顺序布局的输入效率明显提升,可以提高生活的便利程度和工作效率.
在手势识别的过程中,手势的多样性和复杂性会对识别的可靠性和准确性带来较大影响。基于视觉的手势识别通常采取单一特征用于手势分类,但是单一特征无法较好地描述整个图像。因此本文提出多种特征融合的方法,分别提取改进后的梯度方向直方图(HOG)特征和MB-LBP特征,并进行特征融合,结合支持向量机(SVM)分类器完成手势图像的识别。实验结果表明,提取的融合特征包含手势图像的局部区域梯度信息和图像的纹理信息,
2019年末突然爆发的新型冠状病毒(COVID-19)肺炎严重影响到居民的日常生活.网约车作为公共交通系统的补充,在大中运量公共交通停止运营期间,为居民的刚性出行需求提供了保障性服务.本文基于SEIR传染病模型模拟病毒传染的传播过程,通过对比分析说明减少人员接触对遏制病毒传播的重要性.健康码作为一个数字抗疫亮点,考虑到健康码为红色的乘客携带病毒的可能性较高,本文提出对其进行一对一接送策略,在保证乘客出行需求的前提下,降低其他乘客感染病毒的风险,并利用二元选择模型中的logit模型来预测网约车司机运送红码乘
多通道电流传感器自动测试系统可以根据测试需求,实现电流传感器的比例误差、上升时间、零点偏置、零点漂移、线性度等参数的自动测试。其中精密恒流源输出可至200 A,准确度优于0.01%,多台并联可达到2 kA。覆盖了大多数中低准确度的测试需求,同时可配合准确度高达10~(-6)的标准电流传感器解决更高准确度的测试需求。
1 已坚持可持续发展30余年rn从1987年成立伊始,ST就非常重视可持续发展,并把这一理念嵌入到商业模式和企业文化中30余年.ST发布《可持续发展报告》已经有24年的历史.rnST现在开始宣传可持续发展的原因在于:向员工表示感谢,因为这些成就归功于员工;是对客户的感谢和支持;对公众进行可持续发展教育;是一个合作呼吁,希望各方密切合作,共同推进可持续发展战略.
期刊
推荐系统是信息过滤系统领域的一个重要研究方向.随着信息技术的发展,推荐系统在提升用户体验和增加企业效益等方面发挥着越来越重要的作用.主流的推荐系统大多基于矩阵分解模型和深度学习模型,近年来又提出了基于记忆网络和集成学习的推荐系统为用户精确地推荐物品.本文将对基于矩阵分解、基于深度学习、基于记忆网络和基于集成学习的推荐系统进行分析和总结,展望未来的研究方向.