论文部分内容阅读
教育家赞可夫指出:“在各科教学中要始终注意发展学生的逻辑思维,培养学生思维的灵活性和创造性。”在数学教学过程中,教师要特别重视和发展学生的好奇心,让每一个学生养成想问题、问问题、挖问题和延伸问题的习惯,让所有的学生都知道自己有权力和能力提出新见解、发现新问题。这一点对学生的发展很重要,它有利于学生克服迷信和盲从,树立起科学的思想和方法,有利于学生形成良好的学习品质。
一、善于运用启发法和发现法,启发学生思维的积极性
如教学义务教育十一册教材中“圆的认识”一课时,教师首先要学生拿出一张圆形纸片,让他们将圆纸片对折打开,再对折再打开,如此多次,让学生观察,说出在圆纸片上看到了什么。学生精力陡然集中,都想看看圆纸片上有什么。一生发现:圆纸片上有折痕。另一生又发现:圆纸片上有无数条折痕。老师表扬两生观察仔细。其它学生倍爱鼓舞,纷纷发言:圆面上所有折痕相交于一点,折痕两旁的图形完全重合。这时老师让学生打开课本,看一看交点叫什么,折痕叫什么。学生很快找到了答案并熟记。要学习在同一圆中直径和半径的关系了,老师让学生拿出尺子量一量自己手中的圆纸片和同学手中的圆纸片的直径和半径,启发学生:又发现了什么?学生很快得出结论。要画圆了,老师还是不讲画法,让学生先去画,满足他们操作圆规的好奇心,让学生自己去发现画圆的方法和步骤。整节课,学生的思维都处于兴奋状态之中,人人有动手操作、用眼观察、动口说理、动脑思维的机会,学生自己观察发现问题,积极探索、得出结论,教学效果好。
二、精心设计教学内容,培养学生的求异思维
对于小学生来说,既要注意培养他们不盲从、喜欢质疑、打破框框、大胆发表自己意见的品质,又要培养他们敢于求“异”,发展他们的求异思维,进而养成独立思考、独立解决问题的习惯。如:一位教师在教学“乘法意义的运用”一课时,她出示了这样一道加法题:9+9+9+5+9=?让学生用简便方法计算。于是一个学生提出了9×4+5的方法,而另一个学生则提出了“新方案”,建议用9×5-4的方法解。这个学生的思维很有创见,这个方案是他自己发现的。在他的思维活动中,他“看见了”一个实际并不存在的9,他假设在5的位置上是一个9,那么就可以把题目先假设为9×5。接着他的思维又参与了论证:9-4才是原题中实际存在的5。对于这种创造性思维的闪现,教师要加倍珍惜和爱护。
三、利用一题多解,培养学生的“立体思维”模式
如:义务教育十二册教材中的这样一道应用题:“一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行30千米。驶回时逆风,每小时行驶的路程是顺风时的。这艘轮船最多驶出多远就应往回驶了?”老师要求学生用几种方法解答,并说出解题思路。
解这个算式,得这艘轮船最多驶出80千米就应往回驶了。”这个同学利用的是类比思维方式,他是从要解决的问题出发,联想与它类似的一个熟悉的问题即工程问题。用熟悉的问题的解法来思考解答所要解决的问题,这种创造思维的火花感染了全班的每一位同学。
在数学教学中,教师要特别注意培养学生根据题中具体条件自觉、灵活地运用数学方法,通过变换角度思考问题,就可以发现新方法,制定新策略。长期坚持这样的训练,学生一定能产生浓厚的学习数学、运用数学的兴趣。让我们给学生一片广阔的天地,给他们一个自主的空间,让他们乐学、会学、善学,让他们的数学思维能力在课堂学习中得到充分的发展。
(作者单位:416813 湖南省龙山县苗儿滩镇中心小学)
一、善于运用启发法和发现法,启发学生思维的积极性
如教学义务教育十一册教材中“圆的认识”一课时,教师首先要学生拿出一张圆形纸片,让他们将圆纸片对折打开,再对折再打开,如此多次,让学生观察,说出在圆纸片上看到了什么。学生精力陡然集中,都想看看圆纸片上有什么。一生发现:圆纸片上有折痕。另一生又发现:圆纸片上有无数条折痕。老师表扬两生观察仔细。其它学生倍爱鼓舞,纷纷发言:圆面上所有折痕相交于一点,折痕两旁的图形完全重合。这时老师让学生打开课本,看一看交点叫什么,折痕叫什么。学生很快找到了答案并熟记。要学习在同一圆中直径和半径的关系了,老师让学生拿出尺子量一量自己手中的圆纸片和同学手中的圆纸片的直径和半径,启发学生:又发现了什么?学生很快得出结论。要画圆了,老师还是不讲画法,让学生先去画,满足他们操作圆规的好奇心,让学生自己去发现画圆的方法和步骤。整节课,学生的思维都处于兴奋状态之中,人人有动手操作、用眼观察、动口说理、动脑思维的机会,学生自己观察发现问题,积极探索、得出结论,教学效果好。
二、精心设计教学内容,培养学生的求异思维
对于小学生来说,既要注意培养他们不盲从、喜欢质疑、打破框框、大胆发表自己意见的品质,又要培养他们敢于求“异”,发展他们的求异思维,进而养成独立思考、独立解决问题的习惯。如:一位教师在教学“乘法意义的运用”一课时,她出示了这样一道加法题:9+9+9+5+9=?让学生用简便方法计算。于是一个学生提出了9×4+5的方法,而另一个学生则提出了“新方案”,建议用9×5-4的方法解。这个学生的思维很有创见,这个方案是他自己发现的。在他的思维活动中,他“看见了”一个实际并不存在的9,他假设在5的位置上是一个9,那么就可以把题目先假设为9×5。接着他的思维又参与了论证:9-4才是原题中实际存在的5。对于这种创造性思维的闪现,教师要加倍珍惜和爱护。
三、利用一题多解,培养学生的“立体思维”模式
如:义务教育十二册教材中的这样一道应用题:“一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行30千米。驶回时逆风,每小时行驶的路程是顺风时的。这艘轮船最多驶出多远就应往回驶了?”老师要求学生用几种方法解答,并说出解题思路。
解这个算式,得这艘轮船最多驶出80千米就应往回驶了。”这个同学利用的是类比思维方式,他是从要解决的问题出发,联想与它类似的一个熟悉的问题即工程问题。用熟悉的问题的解法来思考解答所要解决的问题,这种创造思维的火花感染了全班的每一位同学。
在数学教学中,教师要特别注意培养学生根据题中具体条件自觉、灵活地运用数学方法,通过变换角度思考问题,就可以发现新方法,制定新策略。长期坚持这样的训练,学生一定能产生浓厚的学习数学、运用数学的兴趣。让我们给学生一片广阔的天地,给他们一个自主的空间,让他们乐学、会学、善学,让他们的数学思维能力在课堂学习中得到充分的发展。
(作者单位:416813 湖南省龙山县苗儿滩镇中心小学)