论文部分内容阅读
利用2017年中低纬电离层总电子含量、地磁活动指数、年积日等参数,首次建立基于贝叶斯正则化(Bayesian regularization)的Elman回归神经网络(BR-Elman)的电离层TEC预报模型。同时,根据地磁活动指数的变化特征,分别进行平静电离层和扰动电离层预报建模。实验结果表明,该方法在平静期5 d预测值的均方根误差为1.19 TECu,残差为1.03 TECu,相关系数为0.93;在扰动期5 d预测值均方根误差为1.34 TECu,残差为1.01 TECu,相关系数为0.91。贝叶