论文部分内容阅读
Nickel-iron nanocrystalline alloys with different compositions and grain sizes were fabricated by electroplating for MEMS devices. The iron content of the deposits was changed by varying the nickel/iron ion ratio in the electrolyte. X-ray diffraction (XRD) analysis was applied for measuring the strength of the texture and grain size of the deposits. The nickel/iron atom ratio of the deposits was analyzed by EDS. The hardness of the alloys was evaluated by Vickers hardness indenter. The internal stress of the deposits was measured by thin film stress measurement using Stoneys formula. Surface morphology and roughness were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Hardness and internal stress mechanism of the electroplated structure as a function of Fe ion content and current density were revealed. With increasing the iron content, the hardness and internal stress of the deposits increase. An excellent correlation between the increase in the internal stress and the loss of (200) texture were found.