论文部分内容阅读
In this study, the North China seismic region was selected as the study area, and evaluation of seismic hazard using the spatial smoothing seismicity model was performed. Firstly, the study area is divided into grids, and some parameters (e.g. b-value, M0, Mu, azimuth and M-L relationship) for each seismotectonic model were assigned. Secondly, using elliptical smoothing based on a seismotectonic background model, the statistical earthquake incidence rate in each grid is successively calculated. Lastly, the relevant ground motion attenuation relationship is chosen to assess seismic hazard of general sites. The maps for the distribution of horizontal peak ground acceleration with 10% probability of exceedance in 50 years were obtained by using the seismic hazard analysis method based on grid source. This seismicity model simplifies the methodology of probabilistic seismic hazard analysis, especially appropriate for those places where seismic tectonics is not yet clearly known. This method can provide valuable references for seismic zonation and seismic safety assessment for significant engineering projects.
The study area is divided into grids, and some parameters (eg, b-value, M0 , Mu, azimuth and ML relationship) for each seismotectonic model were assigned...., Secondly, using elliptical smoothing based on a seismotectonic background model, the statistical earthquake incidence rate in each grid is successively calculated. Lastly, the relevant ground motion attenuation relationship is chosen to Assessment seismic hazard of general sites. The maps for the distribution of horizontal peak ground acceleration with 10% probability of exceedance in 50 years were obtained by using the seismic hazard analysis method based on grid source. This seismicity model simplifies the methodology of probabilistic seismic hazard analysis, especially appropriate for those places where seismic tectonics is not yet clearly known. This metho d can provide valuable references for seismic zonation and seismic safety assessment for significant engineering projects.