论文部分内容阅读
以城市用水人口和城市生产总值作为输入向量,年用水量数据作为目标向量,建立了径向基函数神经网络并对城市用水量进行预测。采用不同的扩展速度,预测误差不同。当扩展速度spread=1时,预测数据与实际数据的相对误差均小于0.05%,取得了很好的预测效果,说明采用径向基函数神经网络模型预测城市用水量的方法是可行的。