论文部分内容阅读
摘要:从现在神经网络在模式识别中的发展来看,针对大型的网络结构的优化问题和网络学习问题还有待进一步的解决和提高。因此,研究各种神经网络在木材表面缺陷识别中的实用性和准确性,对推动木材表面缺陷识别方法的研究,有着十分重要的现实意义。
关键字:木材表面缺陷,神经网络,BP网络
Abstract: from now neural network in pattern recognition of the development perspective, in large network structure optimization problem and network learning problems is still open to solve and improve. Therefore, to study various neural network in the wood surface defect recognition of the practicability and accuracy, wood surface defect recognition to promote the study of the method, has very important practical significance.
Key word: wood surface defect, neural network, and BP network
中图分类号:F762.4 文献标识码:A 文章编号:
随着科学技术的发展,神经网络理论作为一门新兴学科,近年来被广泛应用于木材表面缺陷的识别分类中,以达到神经网络具有的实时性、容错性以及学习性等特点。然而,由于木材表面缺陷种类繁多,随机性比较强,这些都给分类器提出了很高的要求。现阶段,人们普遍采用都是基于误差逆传播算法(BP)的神经网络,然而BP网络的缺点是对干扰量非常敏感、隐含层节点数需要经过多次尝试、学习速度慢且易陷入局部极小点。
1.误差逆传播神经网络(BP网络)
按照误差逆传播学习算法进行训练的多阶层神经网络被直接称为误差逆传播神经网络,即BP网络。BP网络是一种具有三层神经元的阶层神经网络,不同阶层神经元之间实现权重连接,而每层内各个神经元之间不连接。
2.木材缺陷特征提取
⑴ 划分缺陷区域并确定缺陷的尺寸和位置
在二值化图像中,相互连接的黑像素的集合称为一个区域。在这部分程序设计中,通过对图像内每个区域进行标记操作(标号),求得这样区域的数目(也就是在这幅二值图像中存在的缺陷数),进而计算每个缺陷的边界,再按照求得条件进行区域划分,把每个缺陷均划在一个区域中,使一幅图像分成多幅图像。然后分别对每个小幅图像进行计算,确定缺陷的位置及尺寸。
⑵ 根据缺陷位置及尺寸提取灰度特征
根据M[][]数组中的缺陷位置数据,从二值化前的灰度图像中提取缺陷的灰度特征,由此依次地得到缺陷特征数组BB[Rmax-Rmin][Lmax-Lmin]。其中缺陷部分为具体的灰度值,其它均为0。
3.BP网络设计
BP神经网络是目前所有神经网络中算法最为成熟,应用最为广泛的一种神经网络,且具有简单、易于实现等特点。
⑴ 输入层和输出层的设计
BP神经网络的输入,输出层维数完全根据使用者的要求来设计。本实验研究对象为木材缺陷图像,输入为表征木材图像缺陷特征的特征向量,在图像处理过程中,我们提取了缺陷的3个特征数据:缺陷灰度均值、缺陷灰度方差和缺陷形状。
如果把它们作为网络的输入,则网络的输入层的单元个数便确定为3个,根据所达到的识别要求,對木材的十种缺陷进行有效识别,选择输出层单元的个数十个,即每个单元的输出代表一种缺陷类型,这样便确定了网络的输入和输出层单元数目,再根据这两个数据确定中间层(隐层)单元数。
⑵ 隐层的设计
1989年,RobertHeeht-Nielson证明了对于任意在闭区间内的一个连续函数都可以用含一个隐层的BP神经网络来逼近,因而一个单隐层的BP神经网络可以完成任意的n维空间到m维空间的映射,隐层神经元数目选择是一个十分复杂的问题,往往需要根据设计者的经验和多次试验来确定,不存在一个理想的解析式来计算。
⑶ 初始值的选取
由于系统是非线性的,初始值对于学习能否达到局部最小和是否能够收敛的结果关系很大。一个重要的要求是:初始值在输入累加时使每个神经元的状态值接近于零,权值一般取随机数,要比较小。输入样本也同样希望进行归一化处理,使那些比较大的输入仍落在传递函数梯度大的地方。
⑷ 传递函数的选择
BP神经网络传递函数必须是可微的,根据网络的要求和所要达到的网络输出目的,选择网络中间层的传递函数为s形函数,它主要根据值的大小作出运算和判断,它的输出性质与所要求的网络输出具有相同的性质。
⑸ 网络学习算法的构成
木材缺陷的识别应用BP神经网络模型,网络训练采用梯度下降法,使输出误差最小,直到满足给定的精度要求。利用图像处理模块部分构成网络的输入特征量,即把缺陷的灰度均值、灰度方差和形状的长宽比作为输入向量{xl、x2、x3)选择值。这一步也就是向神经网络输入的待识别图像的数字特征通过计算机利用一定的算法对这些数字化特征进行分类。当神经元的非线性函数是s型时,由神经元组成的前传型网络的传递函数是连续可微的,故误差反向传播算法可以用LMS法则进行。
⑹识别网络的系统模型及构成
板材表面特征通常是表现为存在表面缺陷和无表面缺陷两种情况,所以适合选用两级神经网络板材表面缺陷检测模型。一级神经网络用于检测图像是否存在缺陷,如果存在缺陷,则图像存入缓冲区,利用二级神经网络对缓冲区的图像进行分析处理,如果没有缺陷,则不保存图像,直接输出检测结果;二级神经网络根据缺陷图像特征参数对缺陷进行分类,确定图像中每个缺陷的位置。
将人工神经网终与有效的特征提取结合起来,有可能获得更为满意的识别效果。根据图像处理模块分析提取反映缺陷形态的特征向量,这些特征向量既可直接输入神经网络的输入节点,作为网络训练或形态识别的参数,也可导入形态识别特征数据库。另外,为了提高网络的自适应性,进一步完善识别诊断模型,还可在原有的训练的网络基础上,对神经网络模型进行再学习。
4.识别结果与讨论
训练后的BP网络是否满足需要,必须经过检验才能确定。验证网络的正确性一般采用与实际样本数据相比较的方法,即先把验证样本的数据经初始化后输入模型号,经BP网络模型计算,输出相应数据,然后将对照样本的实际值与网络输出值相比较,若误差在允讲范围内,此网络是可用的,否则要重新训练。
5.结束语
神经网络算法识别给传统模式识别法带来了巨大的挑战。它具有记忆、学习和算法多样等功能,在识别中能够得到非常准确的识别结果,所以神经网络识别在对于板材表面缺陷识别这一方面具有可行性和应用价值。由于实验尚处于对神经网络开发的初级阶段,所选择的网络算法((BP算法)是神经网络算法中比较成熟的算法,它具有构造、学习等比较容易的优点,但它的一些不可克服的缺点却影响了它在应用中效果。但是这些缺点是可以克服的,神经网络识别的强大优势和识别效果是非常吸引人的。应用一些新型的网络算法,在多次实验研究的基础上,可以根据对板材表面缺陷识别的一些特有的要求来构造有利于这一识别的新型网络,那么神经网络方法对表面缺陷的识别即可达到优于其它传统识别方法的性能。所以,神经网络算法上的改进是今后研究木材表面缺陷神经网络识别首先解决的工作。
参考文献:
[1]王业琴等 计算机视觉木材表面色差检测的研究[J] 林业科技 2005
[2]赵茂程等 基于BP网络的树形识别系统研究[J] 林业科学 2004
[3]谢永华 基于分形理论木材表面缺陷识别的研究[D] 东北林业大学 2006
作者简介:王俊胜(1963-),男黑龙江省东京城林业局团山子经营所二级木材检验师,主要研究木材检验方向。
关键字:木材表面缺陷,神经网络,BP网络
Abstract: from now neural network in pattern recognition of the development perspective, in large network structure optimization problem and network learning problems is still open to solve and improve. Therefore, to study various neural network in the wood surface defect recognition of the practicability and accuracy, wood surface defect recognition to promote the study of the method, has very important practical significance.
Key word: wood surface defect, neural network, and BP network
中图分类号:F762.4 文献标识码:A 文章编号:
随着科学技术的发展,神经网络理论作为一门新兴学科,近年来被广泛应用于木材表面缺陷的识别分类中,以达到神经网络具有的实时性、容错性以及学习性等特点。然而,由于木材表面缺陷种类繁多,随机性比较强,这些都给分类器提出了很高的要求。现阶段,人们普遍采用都是基于误差逆传播算法(BP)的神经网络,然而BP网络的缺点是对干扰量非常敏感、隐含层节点数需要经过多次尝试、学习速度慢且易陷入局部极小点。
1.误差逆传播神经网络(BP网络)
按照误差逆传播学习算法进行训练的多阶层神经网络被直接称为误差逆传播神经网络,即BP网络。BP网络是一种具有三层神经元的阶层神经网络,不同阶层神经元之间实现权重连接,而每层内各个神经元之间不连接。
2.木材缺陷特征提取
⑴ 划分缺陷区域并确定缺陷的尺寸和位置
在二值化图像中,相互连接的黑像素的集合称为一个区域。在这部分程序设计中,通过对图像内每个区域进行标记操作(标号),求得这样区域的数目(也就是在这幅二值图像中存在的缺陷数),进而计算每个缺陷的边界,再按照求得条件进行区域划分,把每个缺陷均划在一个区域中,使一幅图像分成多幅图像。然后分别对每个小幅图像进行计算,确定缺陷的位置及尺寸。
⑵ 根据缺陷位置及尺寸提取灰度特征
根据M[][]数组中的缺陷位置数据,从二值化前的灰度图像中提取缺陷的灰度特征,由此依次地得到缺陷特征数组BB[Rmax-Rmin][Lmax-Lmin]。其中缺陷部分为具体的灰度值,其它均为0。
3.BP网络设计
BP神经网络是目前所有神经网络中算法最为成熟,应用最为广泛的一种神经网络,且具有简单、易于实现等特点。
⑴ 输入层和输出层的设计
BP神经网络的输入,输出层维数完全根据使用者的要求来设计。本实验研究对象为木材缺陷图像,输入为表征木材图像缺陷特征的特征向量,在图像处理过程中,我们提取了缺陷的3个特征数据:缺陷灰度均值、缺陷灰度方差和缺陷形状。
如果把它们作为网络的输入,则网络的输入层的单元个数便确定为3个,根据所达到的识别要求,對木材的十种缺陷进行有效识别,选择输出层单元的个数十个,即每个单元的输出代表一种缺陷类型,这样便确定了网络的输入和输出层单元数目,再根据这两个数据确定中间层(隐层)单元数。
⑵ 隐层的设计
1989年,RobertHeeht-Nielson证明了对于任意在闭区间内的一个连续函数都可以用含一个隐层的BP神经网络来逼近,因而一个单隐层的BP神经网络可以完成任意的n维空间到m维空间的映射,隐层神经元数目选择是一个十分复杂的问题,往往需要根据设计者的经验和多次试验来确定,不存在一个理想的解析式来计算。
⑶ 初始值的选取
由于系统是非线性的,初始值对于学习能否达到局部最小和是否能够收敛的结果关系很大。一个重要的要求是:初始值在输入累加时使每个神经元的状态值接近于零,权值一般取随机数,要比较小。输入样本也同样希望进行归一化处理,使那些比较大的输入仍落在传递函数梯度大的地方。
⑷ 传递函数的选择
BP神经网络传递函数必须是可微的,根据网络的要求和所要达到的网络输出目的,选择网络中间层的传递函数为s形函数,它主要根据值的大小作出运算和判断,它的输出性质与所要求的网络输出具有相同的性质。
⑸ 网络学习算法的构成
木材缺陷的识别应用BP神经网络模型,网络训练采用梯度下降法,使输出误差最小,直到满足给定的精度要求。利用图像处理模块部分构成网络的输入特征量,即把缺陷的灰度均值、灰度方差和形状的长宽比作为输入向量{xl、x2、x3)选择值。这一步也就是向神经网络输入的待识别图像的数字特征通过计算机利用一定的算法对这些数字化特征进行分类。当神经元的非线性函数是s型时,由神经元组成的前传型网络的传递函数是连续可微的,故误差反向传播算法可以用LMS法则进行。
⑹识别网络的系统模型及构成
板材表面特征通常是表现为存在表面缺陷和无表面缺陷两种情况,所以适合选用两级神经网络板材表面缺陷检测模型。一级神经网络用于检测图像是否存在缺陷,如果存在缺陷,则图像存入缓冲区,利用二级神经网络对缓冲区的图像进行分析处理,如果没有缺陷,则不保存图像,直接输出检测结果;二级神经网络根据缺陷图像特征参数对缺陷进行分类,确定图像中每个缺陷的位置。
将人工神经网终与有效的特征提取结合起来,有可能获得更为满意的识别效果。根据图像处理模块分析提取反映缺陷形态的特征向量,这些特征向量既可直接输入神经网络的输入节点,作为网络训练或形态识别的参数,也可导入形态识别特征数据库。另外,为了提高网络的自适应性,进一步完善识别诊断模型,还可在原有的训练的网络基础上,对神经网络模型进行再学习。
4.识别结果与讨论
训练后的BP网络是否满足需要,必须经过检验才能确定。验证网络的正确性一般采用与实际样本数据相比较的方法,即先把验证样本的数据经初始化后输入模型号,经BP网络模型计算,输出相应数据,然后将对照样本的实际值与网络输出值相比较,若误差在允讲范围内,此网络是可用的,否则要重新训练。
5.结束语
神经网络算法识别给传统模式识别法带来了巨大的挑战。它具有记忆、学习和算法多样等功能,在识别中能够得到非常准确的识别结果,所以神经网络识别在对于板材表面缺陷识别这一方面具有可行性和应用价值。由于实验尚处于对神经网络开发的初级阶段,所选择的网络算法((BP算法)是神经网络算法中比较成熟的算法,它具有构造、学习等比较容易的优点,但它的一些不可克服的缺点却影响了它在应用中效果。但是这些缺点是可以克服的,神经网络识别的强大优势和识别效果是非常吸引人的。应用一些新型的网络算法,在多次实验研究的基础上,可以根据对板材表面缺陷识别的一些特有的要求来构造有利于这一识别的新型网络,那么神经网络方法对表面缺陷的识别即可达到优于其它传统识别方法的性能。所以,神经网络算法上的改进是今后研究木材表面缺陷神经网络识别首先解决的工作。
参考文献:
[1]王业琴等 计算机视觉木材表面色差检测的研究[J] 林业科技 2005
[2]赵茂程等 基于BP网络的树形识别系统研究[J] 林业科学 2004
[3]谢永华 基于分形理论木材表面缺陷识别的研究[D] 东北林业大学 2006
作者简介:王俊胜(1963-),男黑龙江省东京城林业局团山子经营所二级木材检验师,主要研究木材检验方向。