一种使用机器学习方法的数字水印算法

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:jaslxj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对目前数字水印算法存在的不足,本文将离散小波变换和奇异值分解相结合,提出了一种基于机器学习的图像数字水印算法.首先将载体图像进行一级小波变换,提取其低频子带图像对其进行4×4分块处理,然后对每一分块进行奇异值分解后嵌入水印,并提取特征向量用于最小二乘支持向量机的训练,训练好的最小二乘支持向量机用于自适应最大水印嵌入强度的计算以及水印的盲提取.实验选取三张512×512的标准测试图像以及64×64的二值水印图像对算法的透明性与鲁棒性进行测试.实验结果证明,图像具有很好的透明性,PSNR达到了63.71dB,针对旋转、剪切、JPEG压缩、高斯噪声等常规攻击手段时,算法能保持较强的鲁棒性.
其他文献
少样本学习是目前机器学习研究领域的一个热点,它能在少量的标记样本中学习到较好的分类模型.但是,在噪声的不确定环境中,传统的少样本学习模型泛化能力弱.针对这一问题,提出
面部表情是人类表达情感的主要方式.本文提出一种将手工特征和深度学习特征相结合,以跨连通道加权模块为基础的面部表情识别方法.将灰度图、局部二值模式特征、Sobel特征作为三通道特征输入,以深度可分离卷积代替标准卷积;同时引入跨连通道加权模块,通过建模不同通道特征之间的关系,更加高效地进行不同层次特征的融合.本文方法在CK+和JAFFE两个常用表情数据集上进行了验证,取得了高达99.77%和99.48
针对ViBe算法在动态背景下存在鬼影消除时间长、算法适应性差、前景检测噪声多的问题,本文提出一种基于ViBe算法框架的改进算法.该算法采用鬼影检测法标记第1帧中的鬼影区域,并向位于鬼影区域的背景模型中强制引入背景样本,从而快速抑制鬼影;在像素分类过程中,引入自适应分类阈值,解决全局阈值易受动态噪声干扰的问题;在背景模型更新中,根据像素分类的匹配值来动态决定更新因子,提高算法适应场景变化的能力.定性
为了从动态视角分析中国科技创新是否支撑中国经济增长,该文提出了Network DEA-Malmquist指数法,建立全要素生产率、技术进步、技术效率改进和各阶段的效率变化等各种效率指