论文部分内容阅读
文章首先介绍了BP网络数据标准化、隐层神经元选择、网络训练和有效性检验方法。以2003年胶州湾环境监测资料为基础,建立了多输入单输出的3层BP人工神经网络模型,采用8个水环境因子预测浮游植物生物量(Chla浓度)。检测集样本网络预测值与观测值的相关系数为0.8943,平均绝对误差为11.33%。为避免个别网络输入初值对输出的干扰,采取全局灵敏度的方法,分析了各水环境因子变化对浮游植物生物量的相对影响。结果表明,浮游植物生物量对各水环境因子变化响应的敏感系数顺序为DO>COD>PO4-P>SST>pH