【摘 要】
:
在开源社区中,参与者积极参加问题解决过程对于推进开源社区的发展具有积极意义.在本文中,我们选择了部分Github流行仓库中的18215个问题,根据ISO/IEC 14764规范并将问题分为纠正性、适应性、完善性或预防性维护,然后使用了深度学习模型对问题的类型进行了分类,并分析问题类型对开发人员参与评论问题积极性的影响,我们的分析表明,部分开发人员对问题类型具有敏感性,即他们更偏向于参与特定类型的问题解决过程.基于此认识,我们提出了一个对问题进行自动分类的参与者推荐方法.在该方法中,利用了Atten-3CN
【机 构】
:
上海市现代光学系统重点实验室,上海交通大学计算机科学与技术系
【基金项目】
:
国家重点研发计划项目(2018YFB1003800)资助。
论文部分内容阅读
在开源社区中,参与者积极参加问题解决过程对于推进开源社区的发展具有积极意义.在本文中,我们选择了部分Github流行仓库中的18215个问题,根据ISO/IEC 14764规范并将问题分为纠正性、适应性、完善性或预防性维护,然后使用了深度学习模型对问题的类型进行了分类,并分析问题类型对开发人员参与评论问题积极性的影响,我们的分析表明,部分开发人员对问题类型具有敏感性,即他们更偏向于参与特定类型的问题解决过程.基于此认识,我们提出了一个对问题进行自动分类的参与者推荐方法.在该方法中,利用了Atten-3CN
其他文献
随着云计算、大数据、人工智能、物联网的逐渐成熟,科技进步和创新应用不断提速,尤其各个行业中,传感器、智能设备和移动用户数量激增,需要及时应对越来越多的需要就地处理的
介绍了智能灌溉系统与WaterSense?测试规范,重点阐述了基于云服务的智能灌溉系统通过WaterSense?测试规范的过程,通过分析测试结果得出可达到与传统灌溉控制器系统相同甚至更
多自主水下机器人系统(MAUV)越来越多地被应用于海洋勘探与资源开发,受到研究者们的普遍关注.本文探讨了常见的多自主水下机器人系统所执行的任务及所用方法,并从新功能涌现
关于股票价格走势的预测,传统的操作方法多是通过统计分析工具或者是单一的机器学习算法进行预测,很难准确把握股价这种时间序列数据的非线性和非平稳性等特征,从而使预测精度受限.融合SDE算法与加权BiGRU网络的优化预测模型,先使用SDE全局寻优网络的结构参数,求得最优初始权值、阈值以及权重系数,再将优化的参数应用到改良的加权BiGRU网络模型中进行预测.优化的预测模型能够有选择的考虑过去和未来时间点对当前时刻数据的影响,而且能有效避免局部最优值以及网络的长程依赖问题.实验结果表明,优化的预测模型与其他传统神经
中文文本情感分类的一个难点是未利用句法信息来做分类决策从而需要大量训练数据.针对现有深度学习方法在语义分析中效果显著但尚未充分利用句法信息的现状,本文提出一种基于句法依存融合ONLSTM-GCN-Attention(OG-ATT)的中文评论文本分类的机器学习模型.该模型可在得到语义分析的基础上进一步捕获文本的句法信息并引入注意力机制使得文本中重要信息获得更高的决策权重,从而模型对评论文本类别做出准确的判断.本文在两个数据集(携程酒店评论数据集,新浪微博评论数据集)上进行实验根据准确率,召回率,精确率,F1
文本情感分析是自然语言处理的重要部分,但现有的文本情感分析方法均有其不足.为了使各个方法进行互补,提出了一种融合改进Stacking与规则的文本情感分析方法 Stacking-I.该方法在Stacking集成算法的基础上进行改进,融合了两种主流的情感分析方法:文本规则方法和机器学习方法.在不同的3组网络评论文本上进行实验,证明该方法在网络评论文本情感分析实验中表现良好且有较高的准确率,其准确率高于传统机器学习方法、其它集成算法以及深度学习方法,最高可达91.700%,并且在不同数据量的基础上,通过大量实验
寻找近邻用户或近邻项目是传统协同过滤推荐算法的关键内容.通常,数据稀疏性会导致推荐精度降低.基于项目类别偏好的混合协同过滤算法利用项目特征的低维性与二值性进行聚类,通过用户的类别偏好信息寻找近邻用户,此类方法可以在一定程度上缓解数据稀疏性问题.为了进一步提高近邻用户间的相似性,本文在项目类别偏好的混合协同过滤的算法基础上利用半监督AP聚类算法代替传统的聚类算法,并对相似性度量方式进行改进,提出了一种基于半监督AP聚类和改进用户相似度的协同过滤算法.该算法有两个方面改进:一方面,提出了一种新的半监督AP聚类
不平衡数据学习是机器学习中一个研究热点,近年来得到广泛的关注.以SMOTE为代表的过采样方法是不平衡数据学习的主流方法之一,近年来涌现出大量的基于SMOTE的改进过采样方法.但是,当前对过采样的研究中,如何利用样本分布信息,实现高效的过采样,仍然是一个具有挑战的问题.本文提出一种有监督的样本空间分布学习方法,用以学习少数类样本的局部邻域信息,并以局部邻域信息约束过采样过程中样本的合成,以降低线性插值可能带来的噪声以及样本重叠等不利因素,从而提高过采样的效率.在典型不平衡数据集上的实验表明,利用少数类样本邻
近年来,越来越多的互联网企业通过发布社会责任报告增强企业运营透明度,而社会责任报告编制标准则是其报告框架及内容的主要指导文件之一.对收集的近十年的互联网企业社会责
人脸关键点检测问题在静态图像上已经得到了较好的解决,然而当使用这类解决方案逐帧地应用于视频数据时,所预测出的人脸关键点会呈现出明显的非规则抖动,因此如何准确且稳定地对流媒体中的人脸关键点进行定位成为了新的挑战.本文提出了一种基于平滑网格逆变换以及借助参数化人脸3D模型进行对抗训练的方式对现有方案进行改进.该方案训练所得的神经网络模型能够在不借助序列平滑后处理算法的情况下,逐帧应用于流媒体数据,给出