论文部分内容阅读
【摘 要】热电联产燃煤电站对外输送大量蒸汽,回收大量水温度约为80℃的凝结水,对于电厂工艺系统是废热,且需要另外降温处理到60℃,才能到化水车间进行化学处理,这部分热量可以作为滨河路口热电联产燃煤电站厂区内建筑物供暖使用,将本来要排放的废热送至房间供暖,不但可以增加电厂热效率,而且节省了冬季供暖的一次能源消耗。
【关键词】热电联产燃煤电厂凝结水;冬季供暖的应用
0.概述
长江中下游地区、滨河、“两湖一江”运煤铁路通道上所建电厂,简称滨河路口电厂。夏季炎热、冬季湿冷,属我国夏热冬冷地区,该地区属于我国采暖过渡区或采暖过渡区边缘,一般不做集中供暖。但考虑到冬冷夏热季节性气候特点和热电联产电厂对外供热的特点,为满足电厂工艺性设计要求和改善电厂工作人员的生产和工作环境,对经常有人工作或停留的建筑物或房间、需设工艺性空调的房间将设置冬季供暖装置, 全厂冬季热负荷约1450kW。
热电联产燃煤电站对外输送大量蒸汽,回收大量凝结水,通常在100t以上。厂外热网凝结水温度约为80℃,对于电厂工艺系统是废热,需要通过热交换装置将其降温至60℃左右,送至化水车间处理,作为锅炉补给水使用,这一部分热量要通过换热设备排入大气,白白损失掉。但是,80℃的凝结水可以作为高品质冬季供暖的热源,将本来要排放的废热送至房间供暖,不但可以增加电厂热效率,而且节省了冬季供暖的一次能源消耗。
1.厂外热网厂外热网凝结水冬季废热利用
滨河电厂全厂冬季热负荷为1450kW,考虑5%的设计富裕度和5%的热水管路系统热量损失,故冬季设计总供热负荷取值为1600kW。根据GB 50736-2012《民用建筑供暖通风与空气调节设计规范》供回水温差不小于20℃,供回水设计温度为80/60℃,设计流量为68t/h,配2台KQW125/320-15/4热水循环水泵(一运一备),每台流量G=70t/h,扬程H=34m,N=15kW。
为了减小供暖系统与厂外热网凝结水系统相互之间的影响,供暖系统配1个7m3/h的不锈钢水箱。引一路厂外热网凝结水先进入不锈钢水箱,由水泵将热水输送至各建筑末端设备。在散热器中放热后,与厂外热网凝结水主管混合后,进入换热设备降温,再输送到化水车间处理。冬季厂外热网凝结水冬季供暖系统图详见图1.1。
2.常规冬季供暖方案
火力发电厂中,汽水换热机组是冬季较常规的供暖热源,由汽机专业提供表压0.6MPa饱和蒸汽,通过汽水换热,生产80/60℃低温热水,由热水循环水泵输送至各建筑物散热器使用。汽水换热机组冬季供暖系统图见图3.1。
滨河电厂全厂冬季设计总供热负荷取值为1600kW。换热设备采用一台整体式汽-水热交换机组,设计温度80/60℃,换热量为1600kW,配备2台70%容量的双纹管汽-水换热器,单台热交换器加热量 Q=1120kW,配2台KQW125/320-15/4热水循环水泵(一运一备),每台流量G=70t/h,扬程H=34m,N=15kW。
冬季集中空调热水加热系统用蒸汽来自机务专业提供的0.6MPa饱和蒸汽,全厂冬季空调总用汽量约2.4t/h。
整体式热交换机组耗用蒸汽产生的凝结水,水温不大于70℃,冬季可作空调热水系统补水,多余部分经水质检验合格后由凝结水泵送至机务专業排汽装置。
空调热水系统整体式热交换机组配1个V=1m3凝结水箱,2台凝结水泵(一运一备),流量:12.5t/h,扬程:32m,N=4kW。
采暖热水系统补水量为1.4m3/h,系统投运前及系统检修后补充水采用自来水,系统正常投运过程中的补水则采用采暖热水系统汽水热交换机组产生的蒸汽凝结水。系统定压采用自动补水定压装置,配补水箱容积1m3,配2台水泵(一运一备),流量:12.5t/h,扬程:50m,N=5.5kW。
3.方案经济比较
由于两种冬季供暖方案的管路系统及散热器都是相同的,所以只需要对比冬季供暖热源设备初投资及年运行费用,对比见表4.2。
其中冬季空调全热负荷估算如下:
4.结论
(1)从供暖效果看,两种方案均能满足冬季供暖的需求。
(2)从初投资来看,方案一比方案二节省45万。
(3)从运行费用来看,方案一冬季仅有热水泵运行,比方案一节省51.3万。
(4)从年费用来看,方案二比方案一节省55.8万。
(5)从节能方面看,方案一比方案二节省0.9万kW.h,节省蒸汽量5184t,折合电量为103.7万kW.h,共节电约104.6万kW.h。
基于以上对两种冬季供暖方案的综合分析,两种方案均能满足冬季供暖的需求,方案一在初投资、运行费用、年费用及节能方面均大大优于方案二。 [科]
【关键词】热电联产燃煤电厂凝结水;冬季供暖的应用
0.概述
长江中下游地区、滨河、“两湖一江”运煤铁路通道上所建电厂,简称滨河路口电厂。夏季炎热、冬季湿冷,属我国夏热冬冷地区,该地区属于我国采暖过渡区或采暖过渡区边缘,一般不做集中供暖。但考虑到冬冷夏热季节性气候特点和热电联产电厂对外供热的特点,为满足电厂工艺性设计要求和改善电厂工作人员的生产和工作环境,对经常有人工作或停留的建筑物或房间、需设工艺性空调的房间将设置冬季供暖装置, 全厂冬季热负荷约1450kW。
热电联产燃煤电站对外输送大量蒸汽,回收大量凝结水,通常在100t以上。厂外热网凝结水温度约为80℃,对于电厂工艺系统是废热,需要通过热交换装置将其降温至60℃左右,送至化水车间处理,作为锅炉补给水使用,这一部分热量要通过换热设备排入大气,白白损失掉。但是,80℃的凝结水可以作为高品质冬季供暖的热源,将本来要排放的废热送至房间供暖,不但可以增加电厂热效率,而且节省了冬季供暖的一次能源消耗。
1.厂外热网厂外热网凝结水冬季废热利用
滨河电厂全厂冬季热负荷为1450kW,考虑5%的设计富裕度和5%的热水管路系统热量损失,故冬季设计总供热负荷取值为1600kW。根据GB 50736-2012《民用建筑供暖通风与空气调节设计规范》供回水温差不小于20℃,供回水设计温度为80/60℃,设计流量为68t/h,配2台KQW125/320-15/4热水循环水泵(一运一备),每台流量G=70t/h,扬程H=34m,N=15kW。
为了减小供暖系统与厂外热网凝结水系统相互之间的影响,供暖系统配1个7m3/h的不锈钢水箱。引一路厂外热网凝结水先进入不锈钢水箱,由水泵将热水输送至各建筑末端设备。在散热器中放热后,与厂外热网凝结水主管混合后,进入换热设备降温,再输送到化水车间处理。冬季厂外热网凝结水冬季供暖系统图详见图1.1。
2.常规冬季供暖方案
火力发电厂中,汽水换热机组是冬季较常规的供暖热源,由汽机专业提供表压0.6MPa饱和蒸汽,通过汽水换热,生产80/60℃低温热水,由热水循环水泵输送至各建筑物散热器使用。汽水换热机组冬季供暖系统图见图3.1。
滨河电厂全厂冬季设计总供热负荷取值为1600kW。换热设备采用一台整体式汽-水热交换机组,设计温度80/60℃,换热量为1600kW,配备2台70%容量的双纹管汽-水换热器,单台热交换器加热量 Q=1120kW,配2台KQW125/320-15/4热水循环水泵(一运一备),每台流量G=70t/h,扬程H=34m,N=15kW。
冬季集中空调热水加热系统用蒸汽来自机务专业提供的0.6MPa饱和蒸汽,全厂冬季空调总用汽量约2.4t/h。
整体式热交换机组耗用蒸汽产生的凝结水,水温不大于70℃,冬季可作空调热水系统补水,多余部分经水质检验合格后由凝结水泵送至机务专業排汽装置。
空调热水系统整体式热交换机组配1个V=1m3凝结水箱,2台凝结水泵(一运一备),流量:12.5t/h,扬程:32m,N=4kW。
采暖热水系统补水量为1.4m3/h,系统投运前及系统检修后补充水采用自来水,系统正常投运过程中的补水则采用采暖热水系统汽水热交换机组产生的蒸汽凝结水。系统定压采用自动补水定压装置,配补水箱容积1m3,配2台水泵(一运一备),流量:12.5t/h,扬程:50m,N=5.5kW。
3.方案经济比较
由于两种冬季供暖方案的管路系统及散热器都是相同的,所以只需要对比冬季供暖热源设备初投资及年运行费用,对比见表4.2。
其中冬季空调全热负荷估算如下:
4.结论
(1)从供暖效果看,两种方案均能满足冬季供暖的需求。
(2)从初投资来看,方案一比方案二节省45万。
(3)从运行费用来看,方案一冬季仅有热水泵运行,比方案一节省51.3万。
(4)从年费用来看,方案二比方案一节省55.8万。
(5)从节能方面看,方案一比方案二节省0.9万kW.h,节省蒸汽量5184t,折合电量为103.7万kW.h,共节电约104.6万kW.h。
基于以上对两种冬季供暖方案的综合分析,两种方案均能满足冬季供暖的需求,方案一在初投资、运行费用、年费用及节能方面均大大优于方案二。 [科]