论文部分内容阅读
类型一:利用共点力平衡条件及其推论解题
共点力平衡条件是F若用正交分解法为FX=0,Fy=0。
推论1:物体处于平衡状态时,它所受的某一个力与其余几个力的合力等大反向。
推论2:物体在同一平面上的三个不平行力作用下,处于平衡状态时,这三个力必为共点力。
推论3:物体在三个共点力作用下处于平衡状态时,这三个力的有向线段必构成闭合三角形(这是物体共点力平衡意义)。
例1:如图l所示,一物体在三个力作用下处于平衡状态,现将其中一个F1=3N的力保持大小不变,方向逆时针旋转600,且保持另外两个力不变,此时物体所受的合力多大?
解析:由于物体处于平衡态。由共点力平衡条件的推论“物体处于平衡状态时,它所受的某一个力与其余几个力的合力等大反向”可知,力F1必与力F2和F3的合力等大反向,因F2、F3保持不变,故二者的合力F23保持不变(即仍与F1等大反向),如图2所示。当力F1逆时针旋转60度时,三个力的合成就等效成F1与F23的合成,由于F1与F23的大小相等,且夹角为120度,故其合力大小F=F1=3N。
类型二:利用隔离法和整体法解题
整体法和隔离法是力学分析的常用方法。当系统中的各物体运动状态相同时,就可以将整个系统看成一个整体,只研究系统外的物体对整体的作用力,不研究系统内各物体之间的相互作用。在选择是隔离法还是整体法时,如不涉及内力可采用整体法,如要涉及到内力可采用隔离法。
例2:有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图3所示,现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P的支持力FN和细绳上的拉力F的变化情况是:( )
A.FN不变,F变大;
B.FN不变,F变小;
C.FN变大,F变大;
D.FN变大,F变小。
解析:用隔离法分析Q受力,如图4所示,因OB杆光滑,所以绳拉力F的竖直分力与Q环的重力大小相等,设绳与OB杆的夹角力,则Feosθ=mg,由于P向左移动一段距离,使得θ变小,则F=mg/COSθ变小。
对于FN的研究,由于它是P环的受力,因此先研究P环,分析P环受力如图5所示,则有FN=Feosθ mg由θ变小,而F也变小则Fcosθ究竟变大还是变小无法确定。由此可见利用隔离法研究P环进而判定FN的变化的方法行不通。
采用整体法分析P、Q整体,所受的外力如图6所示,由竖直方向平衡条件可知,
FN=2mg,B选项是正确的。
评注:利用整体法和隔离法解决有关问题时,往往不是单独使用,而是综合在一起使用。
跟踪练习:
如图7所示,静止在光滑的水平面上的小车和人,当人在车厢内走动时,小车也会同时运动,试分析:
(1)当人和小车均静止不动时,系统(人和小车)是否处于平衡状态?
(2)当人和小车都运动起来时,系统是否还处于平衡状态?
答案: 解析:(1)取小车和人组成的系统为研究对象,当系统静止不动时,系统只受到两个外力,重力和地面对系统的支持力。合外力为零,因此,系统处于平衡状态。
(2)当小车和人都运动起来时,系统所受外力情况不变,合外力仍为零,因此系统处于平衡状态。
共点力平衡条件是F若用正交分解法为FX=0,Fy=0。
推论1:物体处于平衡状态时,它所受的某一个力与其余几个力的合力等大反向。
推论2:物体在同一平面上的三个不平行力作用下,处于平衡状态时,这三个力必为共点力。
推论3:物体在三个共点力作用下处于平衡状态时,这三个力的有向线段必构成闭合三角形(这是物体共点力平衡意义)。
例1:如图l所示,一物体在三个力作用下处于平衡状态,现将其中一个F1=3N的力保持大小不变,方向逆时针旋转600,且保持另外两个力不变,此时物体所受的合力多大?
解析:由于物体处于平衡态。由共点力平衡条件的推论“物体处于平衡状态时,它所受的某一个力与其余几个力的合力等大反向”可知,力F1必与力F2和F3的合力等大反向,因F2、F3保持不变,故二者的合力F23保持不变(即仍与F1等大反向),如图2所示。当力F1逆时针旋转60度时,三个力的合成就等效成F1与F23的合成,由于F1与F23的大小相等,且夹角为120度,故其合力大小F=F1=3N。
类型二:利用隔离法和整体法解题
整体法和隔离法是力学分析的常用方法。当系统中的各物体运动状态相同时,就可以将整个系统看成一个整体,只研究系统外的物体对整体的作用力,不研究系统内各物体之间的相互作用。在选择是隔离法还是整体法时,如不涉及内力可采用整体法,如要涉及到内力可采用隔离法。
例2:有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图3所示,现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P的支持力FN和细绳上的拉力F的变化情况是:( )
A.FN不变,F变大;
B.FN不变,F变小;
C.FN变大,F变大;
D.FN变大,F变小。
解析:用隔离法分析Q受力,如图4所示,因OB杆光滑,所以绳拉力F的竖直分力与Q环的重力大小相等,设绳与OB杆的夹角力,则Feosθ=mg,由于P向左移动一段距离,使得θ变小,则F=mg/COSθ变小。
对于FN的研究,由于它是P环的受力,因此先研究P环,分析P环受力如图5所示,则有FN=Feosθ mg由θ变小,而F也变小则Fcosθ究竟变大还是变小无法确定。由此可见利用隔离法研究P环进而判定FN的变化的方法行不通。
采用整体法分析P、Q整体,所受的外力如图6所示,由竖直方向平衡条件可知,
FN=2mg,B选项是正确的。
评注:利用整体法和隔离法解决有关问题时,往往不是单独使用,而是综合在一起使用。
跟踪练习:
如图7所示,静止在光滑的水平面上的小车和人,当人在车厢内走动时,小车也会同时运动,试分析:
(1)当人和小车均静止不动时,系统(人和小车)是否处于平衡状态?
(2)当人和小车都运动起来时,系统是否还处于平衡状态?
答案: 解析:(1)取小车和人组成的系统为研究对象,当系统静止不动时,系统只受到两个外力,重力和地面对系统的支持力。合外力为零,因此,系统处于平衡状态。
(2)当小车和人都运动起来时,系统所受外力情况不变,合外力仍为零,因此系统处于平衡状态。