论文部分内容阅读
针对传统方法进行图像分割易受噪声影响的问题,提出一种基于U-Net网络的无人机图像语义分割网络模型。该模型不需要对图像进行预处理,利用反卷积恢复图像分辨率,采用U型结构连接低层网络和高层网络的特征图,利用跳跃连接降低网络复杂度,同时使用Dropout正则化随机激活网络隐藏单元以防止过拟合。实验结果表明:该网络模型可以自动定位林木信息,准确分割林木区域,进一步优化边缘分割结果,实现端对端的图像分割。该模型具有良好的泛化能力,在其他图像分割领域也具有应用价值。