论文部分内容阅读
本文讨论了线性规划中的核心矩阵及其特性,探讨了利用核心矩阵实现单纯形算法的可能性,并进一步提出了一个基于核心矩阵的两阶段原始一对偶单纯形方法,该方法通过原始和对偶两个阶段的迭代,可以在有限次迭代中收敛到原问题的最优解或证明问题无解或无界.在试验的22个问题中,该算法的计算效率总体优于基于传统单纯形方法的MINOS软件.