论文部分内容阅读
提出一种基于神经网络的航空发动机全包线PID控制器参数整定方法,在全包线内选定若干离线整定点,在这些点离线整定PID控制器参数kp,ki,kd。以离线整定点参数为训练样本,离线训练BP神经网络,该网络可映射高度H,马赫数Ma与kp,ki,kd的非线性关系,便可用该网络在线整定包线内任意点的kp,ki,kd。用发动机非线性部件级模型为被控对象的数字仿真表明,用上述方法设计的发动机PID控制器在全包线内,都能获得理想的动静态品质。该方法简单易行,效果好,具有实用价值。