基于节点和链路容量的无线传感器网络级联故障研究

来源 :电子测量技术 | 被引量 : 0次 | 上传用户:yishu888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对当前无线传感器网络(WSN)级联模型中流量指标无法正确反映WSN的汇聚特征,提出了一种受节点容量和链路容量限制的无线传感器网络级联模型.首先,在每个节点上根据新的度量方向介数对负载函数进行定义,并根据每个节点的拥塞状态定义过载函数.其次,通过构建网络级联抗毁性模型,使故障节点可在一定时间延迟后从故障状态恢复.最后,提出了一种路由恢复机制,可以有效改善网络级联故障的抗毁性,并进行了仿真对比测试.结果表明,节点公差系数λn的增大不能降低由级联故障引起的损害程度,但可以推迟级联过程的发生;链路公差系数λl越大,过载节点的比例将显著下降;所提方法可以帮助故障网络在较短时间内得到恢复,使网络状态更加稳定.
其他文献
为了弥补U-Net模型和水平集方法分割肝脏CT图片的不足之处,提出了一种将两者进行融合的分割算法。该算法在训练阶段使用U-Net模型作为先验网络对肝脏进行分割,然后将其输出的分割结果作为先验特征图送入到水平集方法中进一步分割;通过计算两次分割结果的差异,反向传播误差,更新网络参数,最终得到一个完整的分割算法模型。通过在公开数据集3Dircadb上进行实验对比,所提出分割算法的灵敏性和Dice系数的
由于轴承的振动信号中往往蕴含大量的干扰信号,高效提取故障特征并进行分类识别是轴承诊断工作的关键所在.传统的故障特征提取方法往往需要多种表征不同故障的指标集合,本文
煤矿井下机车运输在煤矿日常生产中起到运输物料和矸石的作用,机车作为运输的载体,其能否安全高效地完成调度中心指派的运输任务对煤矿生产至关重要.对机车进行合理的调度优
边缘计算在物联网领域有着广阔的应用前景,尤其是智能配电网中的电缆实时在线监测业务。然而,由于边缘节点的资源和能力相对有限,难以高度全面地满足电缆在线监测任务的高实时性要求。对此,提出了一种基于边缘计算的有线实时在线监测业务任务分配机制,在有效利用和优化边缘节点的资源和能力的基础上,进行动态任务分配。考虑到配网的线性分布特性、边缘节点状态、任务处理开销以及延迟敏感任务的调度策略,建立了基于边缘计算的任务分配模型。其次,提出了一种基于任务分配策略的优化方法。仿真结果表明,所提出的任务分配机制能够有效降低配网有
针对传统的小波增强算法应用于医学CT图像时处理效果不理想。存在许多问题,如在增强图像的同时使图像的细节丢失,减弱图像中目标的边缘信息,降低了图像的对比度。为保持良好的边缘细节信息,突出CT图像敏感信息,更好地重构增强图像,提出了一种基于多视小波变换融合的医学CT图像增强算法。该算法利用乘性分解得到原始图像的细节图和利用聚类的共显性方法得到原始图像的显著图并且通过小波变换进行融合,然后对图像融合准则
随着传动系统的进步以及传感器技术的发展,光电跟踪系统的应用领域不断拓展,系统针对的跟踪目标也从高空、远距离、速度快、运动规律强的传统目标进一步拓展到了低空、距离近、速度慢、运动规律弱的新型目标。面对新型的跟踪目标,光电跟踪系统需考虑进一步提升光电跟踪技术以提高系统的跟踪能力。前馈控制是一种提高系统跟踪能力非常有效的手段,前馈控制的关键在于获取实时准确的目标运动状态,但探测目标的图像传感器一般都存在不可忽略的时间延迟。因此就形成了基于预测滤波的光电跟踪技术研究方向。回顾目前主流的4种基于预测滤波的光电跟踪技
针对当前利用RGB-D图像进行目标检测出现的网络融合不充分和检测效率不高等问题,提出一种基于注意力机制的特征逐级融合网络结构。首先在基于Yolo v3的Backbone网络结构下,分别用标注好的RGB-D样本分别训练RGB和Depth网络,然后通过注意力模块增强两种特征,最后在网络中期逐层融合得到最终的特征权重。在具有挑战性的NYU Depth v2数据集上测试,得到本文方法的均值平均精度为77.
为了提高手语识别准确率,提出一种基于混合粒子群优化的支持向量机(HPSO-SVM)的多传感器手语识别方法.在原始数据采集阶段,利用ZTEMG-2000肌电传感器采集人体手臂表肌电信号
针对传统校正方法在非均匀背景场中会面临校正性能降低,甚至完全失效的问题,设计了一种新的非均匀背景场中的矢量磁力计阵列校正方法,依据空间中一点的张量不变量的旋转不变
针对未知动态环境中多机器人协作围捕的时间长、成功率低的问题,提出了一种基于生物启发神经网络的新型多机器人协作围捕方法.首先,构建了多机器人协作围捕模型,利用动态联盟