论文部分内容阅读
[摘 要]文中笔者根据多年工作经验对铝合金阳极氧化相关技术及故障进行分析,并在最后提出预防氧化故障的措施。
[关键词]铝合金;阳极氧化;故障;
中图分类号:S525 文献标识码:A 文章编号:1009-914X(2018)28-0393-01
一、铝合金的阳极氧化相关技术
1.铝合金硫酸溶液的阳极氧化技术
铝合金的硫酸阳极氧化能够获得的吸附性膜层厚度在0.5微米到20微米之间,通常可以作为一般的防护或者是油漆中的底漆。硫酸溶液的阳极氧化空隙率为36%,膜的吸附性较强,同时染色较为容易,一般也作为装饰的一部分来使用。
2.铝合金铬酸溶液的阳极氧化技术
铝合金的铬酸阳极氧化能够获得的吸附性膜层厚度在2微米到5微米之间。膜的颜色是可以变化的,通常是灰白色或者深灰色。一般不作为染色来用。铬酸的阳极氧化能够有效的保持飞机零件的原有粗糙度。膜层较软,具有很好的弹性,在应用过程中不会出现较为明显的疲劳强度衰退问题,但是这种膜层的耐磨性没有硫酸阳极氧化产生的膜层好。
3.铝合金硼酸溶液的阳极氧化技术
硼酸阳极氧化在性能上除了具有硫酸阳极氧化的优点之外,还具有另外四个优点。第一个是具有很好的遮盖能力;第二个是具有低浓度的槽液成分;第三个是槽液在处理过程中较为方便;第四个是对于外界环境的污染较小。因此硼酸阳极氧化技术也被称为环保型的养护技术。
4.铝合金草酸溶液的阳极氧化技术
铝合金的草酸阳极氧化能够获得的吸附性膜层厚度在8微米到20微米之间。这种阳极氧化技术日本或者德国使用的较多,现在我国的应用也较为广泛。这种阳极氧化技术得到的膜层厚度大,同时还具有高硬度,最主要的是耐磨性能和耐腐蚀性能非常好。但是由于草酸溶液的氧化膜的颜色会随着外界的变化而变化,因此在使用过程中还是受到了一定的限制。
5.铝合金磷酸溶液的阳极氧化技术
磷酸溶液的阳极氧化技术最早是由美国发明的,这种氧化技术就是利用了磷酸的弱酸性特质进行氧化反应,这种技术具有三个显著的特点。第一个特点是对于环境的污染较小;第二个特点是没有很强的毒性;第三个特点是生产成本较低。但是由于磷酸溶液反应的膜层厚度较薄,在使用过程中还是受到了一定的限制。
6.铝合金混合溶液的阳极氧化技术
混合溶液的阳极氧化反应中的溶液主要有两种。第一种是硫酸溶液;第二种是草酸溶液。在这两种的基础上再添加各种无机盐等。混合溶液的阳极氧化反应就有很好的工作效率,同时膜层较厚。但是混合溶液的阳极氧化技术生产成本过高,因此在实际的应用过程中还是受到了一定的限制。
二、常见故障及分析
(1)铝合金制品经硫酸阳极氧化处理后,发生局部无氧化膜,呈现肉眼可见的黑斑或条纹,氧化膜有鼓瘤或孔穴现象。一般与铝和铝合金的成分、组织及相的均匀性等有关,或者与电解液中所溶解的某些金属离子或悬浮杂质等有关。铝和铝合金的化学成分、组织和金属相的均匀性会影响氧化膜的生成和性能。纯铝或铝镁合金的氧化膜容易生成,膜的质量也较佳。而铝硅合金或含铜量较高的铝合金,氧化膜则较难生成,且生成的膜发暗、发灰,光泽性不好。如果表面产生金属相的不均匀、组织偏析、微杂质偏析或者热处理不当所造成各部分组织不均匀等,则易产生选择性氧化或选择性溶解。若铝合金中局部硅含量偏析,则往往造成局部无氧化膜或呈黑斑点条纹或局部选择性溶解产生空穴等。
(2)同槽处理的阳极氧化零件,有的无氧化膜或膜层轻薄或不完整,有的在夹具和零件接触处有烧损熔蚀现象。这类故障在硫酸阳极氧化工艺实践中往往较多发生,严重影响铝合金阳极氧化质量。由于铝氧化膜的绝缘性较好,所以铝合金制件在阳极氧化处理前必须牢固地装挂在通用或专用夹具上,以保证良好的导电性。导电棒应选用铜或铜合金材料并要保证足够接触面积。夹具与零件接触处,既要保证电流自由通过,又要尽可能减少夹具和零件间的接触印痕。接触面积过小,电流密度太大,会产生过热易烧损零件和夹具。无氧化膜或膜层不完整等现象,主要是由于夹具和制件接触不好,导电不良或者是由于夹具上氧化膜层未彻底清除所致。
(3)铝合金硫酸阳极氧化处理后,氧化膜呈疏松粉化甚至手一摸就掉,特别是填充封闭后,制件表面出现严重粉层,抗蚀性低劣。这一类故障多发生在夏季,尤其是没有冷却装置的硫酸阳极化槽,往往处理1~2槽零件后,疏松粉化现象就会出现,明显地影响氧化膜的质量。由于铝合金阳极氧化膜电阻很大,在阳极氧化工艺过程中会产生大量焦耳热,槽电压越高产生热量越大,从而导致电解液温度不断上升。所以在阳极氧化过程中,必须采用搅拌或冷却装置使电解液温度保持在一定范围。一般情况下,温度应控制在13~26℃,氧化膜质量较佳。若电解液温度超过30℃,氧化膜会产生疏松粉化,膜层质量低劣,严重时发生“烧焦”现象。
(4)偶然发生铝合金硫酸阳极氧化后氧化膜暗淡无光,有时产生点状腐蚀,严重时黑色点状腐蚀显著,导致零件报废,引起较大损失。这类故障往往是偶然发生并有特殊原因造成的。在铝合金阳极氧化过程中,中途断电又重新给电,往往会使氧化膜暗淡无光,而中途停电零件在清洗槽停留过久,清洗水槽酸度过高,水质不净,含悬浮物、泥砂等较多,往往会使铝合金制件发生电化学腐蚀,发生点状腐蚀黑斑等。
三、预防故障的措施
(1)对不同材质的铝合金,裸铝和纯零件或大小规格不同的铝和铝合金零件,一般不宜同槽氧化处理。对于搭接、点焊或铆接的铝合金组合件,对于在阳极氧化过程中易形成气袋不易排除的铝合金制件,从质量考虑,一般不允许采用硫酸阳极氧化工艺。
(2)装挂夹具材料必须确保导电良好,一般选用硬铝合金棒,极材要保证有一定弹性和强度。拉钩宜选用铜或铜合金材料。已使用过的专用或通用工夹具如阳极氧化处理时再次使用,必须彻底退除其表面氧化膜,确保良好接触。工夹具既要保证足够导电接触面积,又要尽量减少夹具印痕。如果接触面太小,会导致烧损熔蚀阳极氧化零件。
(3)硫酸阳极氧化溶液的温度必须严格控制,最佳温度范围是15~25℃。硫酸阳极氧化工艺过程中需采用压缩空气搅拌,并应配备制冷装置。在无制冷装置的情况下,在硫酸电解液中加人1.5%~2.0%的丙三酸或草酸、乳酸等梭酸,可以使阳极氧化溶液温度范围超过35℃而避免或减少氧化膜的疏松或粉化。
(4)硫酸阳极氧化电解液所使用的水质及电解液中的有害杂质必须严格控制。配制硫酸阳极氧化溶液不宜用自来水,尤其不能用浑浊的含Ca2+,Mg2+,Si032-及Cl—含量高的自来水。一般情况下,水中CI—浓度达25mg/L时就会对铝合金的阳极氧化处理产生有害影响。CI—(包括其它卤族元素)可破坏氧化膜生成,甚至根本形不成氧化膜。硫酸阳极氧化应选用软化水、去离子水或蒸馏水,电解液中的CCI—≦15mg/L,总矿物质≦50mg/L。硫酸溶液在阳极氧化工艺过程中,会产生油污泡沫及悬浮杂质,应定期排除。硫酸阳极氧化溶液中常见的其他有害杂质还有Cu2+,Fe3+,Al3+等。如果杂质含量超過允许含量,会产生有害影响,可部分或全部更换硫酸溶液,才能有效保证铝合金硫酸阳极氧化质量。
参考文献
[1]洪望京.浅谈铝合金阳极氧化故障[J].经营管理者,2017,(01):323.
[2]陈思东.铝合金阳极氧化故障研究[J].工程技术研究,2017(7):147~148.
[3]刘成钢.李雪松.铝合金阳极氧化途径研究[J].赤子(上中旬),2017(2):179.
[关键词]铝合金;阳极氧化;故障;
中图分类号:S525 文献标识码:A 文章编号:1009-914X(2018)28-0393-01
一、铝合金的阳极氧化相关技术
1.铝合金硫酸溶液的阳极氧化技术
铝合金的硫酸阳极氧化能够获得的吸附性膜层厚度在0.5微米到20微米之间,通常可以作为一般的防护或者是油漆中的底漆。硫酸溶液的阳极氧化空隙率为36%,膜的吸附性较强,同时染色较为容易,一般也作为装饰的一部分来使用。
2.铝合金铬酸溶液的阳极氧化技术
铝合金的铬酸阳极氧化能够获得的吸附性膜层厚度在2微米到5微米之间。膜的颜色是可以变化的,通常是灰白色或者深灰色。一般不作为染色来用。铬酸的阳极氧化能够有效的保持飞机零件的原有粗糙度。膜层较软,具有很好的弹性,在应用过程中不会出现较为明显的疲劳强度衰退问题,但是这种膜层的耐磨性没有硫酸阳极氧化产生的膜层好。
3.铝合金硼酸溶液的阳极氧化技术
硼酸阳极氧化在性能上除了具有硫酸阳极氧化的优点之外,还具有另外四个优点。第一个是具有很好的遮盖能力;第二个是具有低浓度的槽液成分;第三个是槽液在处理过程中较为方便;第四个是对于外界环境的污染较小。因此硼酸阳极氧化技术也被称为环保型的养护技术。
4.铝合金草酸溶液的阳极氧化技术
铝合金的草酸阳极氧化能够获得的吸附性膜层厚度在8微米到20微米之间。这种阳极氧化技术日本或者德国使用的较多,现在我国的应用也较为广泛。这种阳极氧化技术得到的膜层厚度大,同时还具有高硬度,最主要的是耐磨性能和耐腐蚀性能非常好。但是由于草酸溶液的氧化膜的颜色会随着外界的变化而变化,因此在使用过程中还是受到了一定的限制。
5.铝合金磷酸溶液的阳极氧化技术
磷酸溶液的阳极氧化技术最早是由美国发明的,这种氧化技术就是利用了磷酸的弱酸性特质进行氧化反应,这种技术具有三个显著的特点。第一个特点是对于环境的污染较小;第二个特点是没有很强的毒性;第三个特点是生产成本较低。但是由于磷酸溶液反应的膜层厚度较薄,在使用过程中还是受到了一定的限制。
6.铝合金混合溶液的阳极氧化技术
混合溶液的阳极氧化反应中的溶液主要有两种。第一种是硫酸溶液;第二种是草酸溶液。在这两种的基础上再添加各种无机盐等。混合溶液的阳极氧化反应就有很好的工作效率,同时膜层较厚。但是混合溶液的阳极氧化技术生产成本过高,因此在实际的应用过程中还是受到了一定的限制。
二、常见故障及分析
(1)铝合金制品经硫酸阳极氧化处理后,发生局部无氧化膜,呈现肉眼可见的黑斑或条纹,氧化膜有鼓瘤或孔穴现象。一般与铝和铝合金的成分、组织及相的均匀性等有关,或者与电解液中所溶解的某些金属离子或悬浮杂质等有关。铝和铝合金的化学成分、组织和金属相的均匀性会影响氧化膜的生成和性能。纯铝或铝镁合金的氧化膜容易生成,膜的质量也较佳。而铝硅合金或含铜量较高的铝合金,氧化膜则较难生成,且生成的膜发暗、发灰,光泽性不好。如果表面产生金属相的不均匀、组织偏析、微杂质偏析或者热处理不当所造成各部分组织不均匀等,则易产生选择性氧化或选择性溶解。若铝合金中局部硅含量偏析,则往往造成局部无氧化膜或呈黑斑点条纹或局部选择性溶解产生空穴等。
(2)同槽处理的阳极氧化零件,有的无氧化膜或膜层轻薄或不完整,有的在夹具和零件接触处有烧损熔蚀现象。这类故障在硫酸阳极氧化工艺实践中往往较多发生,严重影响铝合金阳极氧化质量。由于铝氧化膜的绝缘性较好,所以铝合金制件在阳极氧化处理前必须牢固地装挂在通用或专用夹具上,以保证良好的导电性。导电棒应选用铜或铜合金材料并要保证足够接触面积。夹具与零件接触处,既要保证电流自由通过,又要尽可能减少夹具和零件间的接触印痕。接触面积过小,电流密度太大,会产生过热易烧损零件和夹具。无氧化膜或膜层不完整等现象,主要是由于夹具和制件接触不好,导电不良或者是由于夹具上氧化膜层未彻底清除所致。
(3)铝合金硫酸阳极氧化处理后,氧化膜呈疏松粉化甚至手一摸就掉,特别是填充封闭后,制件表面出现严重粉层,抗蚀性低劣。这一类故障多发生在夏季,尤其是没有冷却装置的硫酸阳极化槽,往往处理1~2槽零件后,疏松粉化现象就会出现,明显地影响氧化膜的质量。由于铝合金阳极氧化膜电阻很大,在阳极氧化工艺过程中会产生大量焦耳热,槽电压越高产生热量越大,从而导致电解液温度不断上升。所以在阳极氧化过程中,必须采用搅拌或冷却装置使电解液温度保持在一定范围。一般情况下,温度应控制在13~26℃,氧化膜质量较佳。若电解液温度超过30℃,氧化膜会产生疏松粉化,膜层质量低劣,严重时发生“烧焦”现象。
(4)偶然发生铝合金硫酸阳极氧化后氧化膜暗淡无光,有时产生点状腐蚀,严重时黑色点状腐蚀显著,导致零件报废,引起较大损失。这类故障往往是偶然发生并有特殊原因造成的。在铝合金阳极氧化过程中,中途断电又重新给电,往往会使氧化膜暗淡无光,而中途停电零件在清洗槽停留过久,清洗水槽酸度过高,水质不净,含悬浮物、泥砂等较多,往往会使铝合金制件发生电化学腐蚀,发生点状腐蚀黑斑等。
三、预防故障的措施
(1)对不同材质的铝合金,裸铝和纯零件或大小规格不同的铝和铝合金零件,一般不宜同槽氧化处理。对于搭接、点焊或铆接的铝合金组合件,对于在阳极氧化过程中易形成气袋不易排除的铝合金制件,从质量考虑,一般不允许采用硫酸阳极氧化工艺。
(2)装挂夹具材料必须确保导电良好,一般选用硬铝合金棒,极材要保证有一定弹性和强度。拉钩宜选用铜或铜合金材料。已使用过的专用或通用工夹具如阳极氧化处理时再次使用,必须彻底退除其表面氧化膜,确保良好接触。工夹具既要保证足够导电接触面积,又要尽量减少夹具印痕。如果接触面太小,会导致烧损熔蚀阳极氧化零件。
(3)硫酸阳极氧化溶液的温度必须严格控制,最佳温度范围是15~25℃。硫酸阳极氧化工艺过程中需采用压缩空气搅拌,并应配备制冷装置。在无制冷装置的情况下,在硫酸电解液中加人1.5%~2.0%的丙三酸或草酸、乳酸等梭酸,可以使阳极氧化溶液温度范围超过35℃而避免或减少氧化膜的疏松或粉化。
(4)硫酸阳极氧化电解液所使用的水质及电解液中的有害杂质必须严格控制。配制硫酸阳极氧化溶液不宜用自来水,尤其不能用浑浊的含Ca2+,Mg2+,Si032-及Cl—含量高的自来水。一般情况下,水中CI—浓度达25mg/L时就会对铝合金的阳极氧化处理产生有害影响。CI—(包括其它卤族元素)可破坏氧化膜生成,甚至根本形不成氧化膜。硫酸阳极氧化应选用软化水、去离子水或蒸馏水,电解液中的CCI—≦15mg/L,总矿物质≦50mg/L。硫酸溶液在阳极氧化工艺过程中,会产生油污泡沫及悬浮杂质,应定期排除。硫酸阳极氧化溶液中常见的其他有害杂质还有Cu2+,Fe3+,Al3+等。如果杂质含量超過允许含量,会产生有害影响,可部分或全部更换硫酸溶液,才能有效保证铝合金硫酸阳极氧化质量。
参考文献
[1]洪望京.浅谈铝合金阳极氧化故障[J].经营管理者,2017,(01):323.
[2]陈思东.铝合金阳极氧化故障研究[J].工程技术研究,2017(7):147~148.
[3]刘成钢.李雪松.铝合金阳极氧化途径研究[J].赤子(上中旬),2017(2):179.