论文部分内容阅读
传统端元提取算法一般需要人工指定端元数目,易导致多选或漏选端元。利用数据场自然拓扑聚类、可视化的特性,提出了基于数据场的端元提取方法。首先对图像进行分区处理,然后应用数据场思想计算各区域数据点的势能,并分别选择一定数量的特征点,将所有特征点集合成特征图像,再计算特征图像的数据场;最后根据数据场形成的拓扑聚类结构,可视化地提取端元,获得最佳端元的数目和位置。利用Cuprite矿区的AVIRIS数据进行端元提取实验,结果表明:该方法是合理有效的,能够应用于高光谱图像的端元提取中。