正合范畴与广义Abel范畴中的正合性引理

来源 :中国科学:数学 | 被引量 : 0次 | 上传用户:lin_yuqi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
弱幂等完备正合范畴和广义Abel范畴是Abel范畴两种重要的推广.蛇引理是同调代数中最基本的引理.本文指出在弱幂等完备正合范畴中,三种形式的蛇引理、同调代数基本定理和3×3引理这五条定理都成立,并且互相等价,由此可推导出其他正合性引理.在广义Abel范畴中,三种形式的蛇引理都成立,并且互相等价,由此可推导出同调代数基本定理和其他正合性引理.
其他文献
自然数是由素数生成的乘法半群,从推广素数乘积的非交换性得到一类具有算术性质的非交换半群,自然数上的M¨obius函数和Riemannζ-函数等得到了自然推广.经典的Thompson群的生成半群等例子都是我们研究的特殊情形,它们上面的ζ-函数和经典的ζ-函数有类似的性质,但也有本质差别.本文证明类似的素数定理对许多非交换算术半群成立.而Thompson半群的ζ-函数至少有两个极点,这种现象反映了非交
期刊
纵观近代生命科学的发展, 19世纪的突出成就是细胞学说的提出和达尔文进化论的诞生; 20世纪则是DNA双螺旋结构的发现、遗传密码的破译、遗传工程学和分子生物学的创立等~([1]).这些里程碑式的成果带领着生命科学开始从宏观切入微观、从细胞水平跨越至分子水平.此后,在人类基因组研究计划完成的"后基因组"时代,新的学科生长点不断涌现,一系列新兴生命科学领域和新兴生物技术方向,
期刊
古菌、细菌及真核生物共同组成了地球上的三域生命体系.其中古菌域不仅包含了现今地球上最古老的生命类群,如产甲烷古菌;同时,阿斯加德(Asgard)古菌超门还被认为是真核生物的共同祖先.近些年来,随着地球科学和生命科学交叉研究日益加深,科学家发现古菌在地球化学元素循环中也起到了显著作用.通过不依赖于纯培养的高通量测序技术分析,表明古菌具有丰富的物种多样性,现已发现超过20个全新的古菌门.然而,目前仅在
期刊
不可扩展直积基(unextendible product bases, UPB)是量子信息中的重要概念,在量子信息的诸多领域有着广泛的应用. UPB的构造与组合数学有着密切的联系,著名组合学家Alon和Lovász利用一系列图论工具率先刻画了一组UPB态的数目达到平凡下界时的充分必要条件,进而冯克勤先生将图的1-因子分解等工具引入到此问题的研究之中.本文继续利用图论工具,在部分参数下得到了UPB最
期刊
自1931年狄拉克提出磁单极子存在的理论猜想以来,磁单极子探测成为了物理学家和天文学家共同研究的重大课题.历史上曾经有人声称探测到磁单极子,但是没有获得可重复的实验结果.最近,欧洲大型强子对撞机(Large Hadron Collider)实验限制了磁单极子的质量下限约为0.5 TeV.当代还有许多大型地面/地下实验,如MACRO, IceCube, Auger等探测来自宇宙的磁单极子,获得了不同
期刊
镶嵌数问题与椭圆曲线的算术紧密相关.利用Birch引理和由本文作者之一田野发展的归纳法来证明Heegner点非挠的方法,本文给出一类多个素因子的镶嵌数的构造,并且证明相关椭圆曲线的BSD猜想2-部分.本文处理的椭圆曲线二次扭族不带复乘,且其2-Selmer群的分布不被已知的猜想和结论所预测.
期刊
本文首先回顾和总结关于酉志村簇的Kudla纲领的最新研究进展.本文展示局部算术Siegel-Weil公式如何推导出U(n, 1)的非退化系数整体算术Siegel-Weil公式.特别地,本文证明U(1, 1)的非退化系数整体算术Siegel-Weil公式.
期刊
本文计算一类Moisio型指数和.设2模r~m的阶为(r-1)/2·r~(m-1),其中r为奇素数, r≡1 (mod 4),m为正整数.设q=2~((r-1)/2·r~(m-1)), F_q为q元有限域,χ为F_q到复数的经典加法特征.本文将给出指数和S(a, b)=∑_(x∈F_q)χ(ax~((q-1)/r~m)+bx)(a, b∈F_q)的值.特别地,本文运用有限域上椭圆曲线的有理点,计算
期刊
构建有向的耦合协调度模型,分析生物医药技术、资金、人才在城市间流动的协同水平,依此划分耦合分区。利用均方差-突变级数法和地理加权回归模型,探究2000—2018年间双元创新冷热点演化格局、双元创新驱动因素的时空异质性及其在不同耦合分区内的主导效应。结果发现:(1)城市集聚多元创新要素时"脱钩"现象突出,对外配置多元要素时"雁阵效应"明显。根据多元要素协同流动情况,将地域划分为以依附式耦合为主的保守
期刊
本文首先回顾数域K的Abel p-分歧理论特别是其T_p-群,并给出一般Cohen-Lenstra猜想的架构.对于全体实(虚)二次域及其几类子族,本文提出T_p(K)的分布满足新的Cohen-Lenstra猜想.后者解释了Shanks等(1999)对于2-进L函数特殊值的分布猜测,并给出基本单位迹的分布猜想.本文给出理论结果和计算数据来支持这些猜想.
期刊